R88 发表于 2013-4-18 17:35:09

【转】发几篇电源的文章

转自:http://bbs.dianyuan.com/topic/49433,感谢原作者,原文章我感觉有几处有问题,就改了,本人初学不对的指出!
反激::
反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。
算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。
第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来,

这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47
第二步,确实原边电流波形的参数.
原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊.这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值,二是有效值,三是其峰值,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值=输出功率/效率*VS,因为输出功率乘以效率就是输入功率,然后输入功率再除以输入电压就是输入电流,这个就是平均值电流。现在下一步就是求那个电流峰值,尖峰值是多少呢,这个我们自己还要设定一个参数,这个参数就是KRP,所谓KRP,就是指最大脉动电流和峰值电流的比值这个比值下图分别是最大脉动电流和峰值电流。是在0和1之间的。这个值很重要。已知了KRP,现在要解方程了,都会解方程吧,这是初一的应用题啊,我来解一下,已知这个波形一个周期的面积等于电流平均值*T,这个波形的面积等于,峰值电流*KRP*Ton/2+峰值电流*(1-KRP)*Ton,所以有电流平均值等于上式,解出来峰值电流=电流平均值/(1-0.5KRP)*D。比如说我这个输出是10W,设定效率是0.8.则输入的平均电流就是10/0.8*90=0.138A,我设定KRP的值是0.6而最大值=0.138/(1-0.5KRP).D=0.138/(1-0.5*0.6)*0.47=0.419A.

第三个电流参数,就是这个电流的有效值,电流有效值和平均值是不一样的,有效值的定义还记得吗,就是说把这个电流加在一个电阻上,若是其发热和另处一个交流电流加在这个电阻上发热效果一样的话,那么这个电流的有效值就等于这个交流的有效值.所以这个电流的有效值不等于其平均值,一般比其平均值要大.而且同样的平均值,可以对应很多个有效值,若是把KRP的值选得越大,有效值就会越小,有效值还和占空比D也有关系,总之.它这个电流波形的形状是息息相关的.我就直接给出有效值的电流公式,这个公式要用积分才能推得出来,我就不推了,只要大家区分开来有效值和平均值就可以了.
电流有效值=电流峰值*根号下的D*((KRP的平方/3)-KRP+1)如我现在这个,电流有效值=0.419*根号下0.47*((0.36/3)-0.6+1)=0.20A.所以对应于相同的功率,也就是有相同的输入电流时,其有效值和这些参数是有关的,适当的调整参数,使有效值最小,发热也就最小,损耗小.这便优化了设计.
第三步,开始设计变压器准备工作.已知了开关频率是100KHZ则开关周期就是10微秒了,占空比是0.47.那么TON就是4.7微秒了.记好这两个数,对下面有用.
第四步,选定变压器磁芯,这个就是凭经验了,如果你不会选,就估一个,计算就行了,若是不行,可以再换一个大一点的或是小一点的,不过有的资料上有如何根据功率去选磁芯的公式或是区线图,大家不妨也可以参考一下.我一般是凭经验来的.
第五步,计算变压器的原边匝数,原边使用的线径.计算原边匝数的时候,要选定一个磁芯的振幅B,即这个磁芯的磁感应强度的变化区间,因为加上方波电压后,这个磁感应强度是变化的,正是因为变化,所以其才有了变压的作用,NP=VS*TON/SJ*B,这几个参数分别是原边匝数,,最小输入电压,导通时间,磁芯的\横节面积和磁芯振幅,一般取B的值是0.1到0.2之间,取得越小,变压器的铁损就越小,但相应变压器的体积会大些.这个公式来源于法拉弟电磁感应定律,这个定律是说,在一个铁心中,当磁通变化的时候,其会产生一个感应电压,这个感应电压=磁通的变化量/时间T再乘以匝数比,把磁通变化量换成磁感应强度的变化量乘以其面积就可以推出上式来,简单吧.我的这个NP=90*4.7微秒/32平方毫米*0.15,得到88匝0.15是我选取的了值.算了匝数,再确定线径,一般来说电流越大,线越热,所以需要的导线就越粗,,需要的线径由有效值来确定,而不是平均值.上面已经算得了有效值,所以就来选线,我用0.25的线就可以了,用0.25的线,其面积是0.049平方毫米,电流是0.2安,所以其电流密度是4.08,可以,一般选定电流密度是4到10安第平方毫米.记住这一点,这很重要.若是电流很大,最好采用两股或是两股以上的线并绕,因为高频电流有趋效应,这样可以比较好.
第六步,确定次级绕组的参数,圈数和线径.记得原边感应电压吧,这就是一个放电电压,原边就是以这个电压放电给副边的,看上边的图,因为副边输出电太为5V,加上肖特基管的压降,就有5.6V,原边以80V的电压放电,副边以5.6V的电压放电,那么匝数是多少呢,当然其遵守变压器那个匝数和电压成正比的规律啦.所以副边电压=NS*(UO+UF)/VOR,其中UF为肖特基管压降.如我这个副边匝数等于88*5.6/80,得6.16,整取6匝.再算副边的线径,当然也就要算出副边的有效值电流啦,副边电流的波形会画吗,我画给大家看一下吧:

画的不太对称,没关系,只要知道这个意思,就可以了.有突起的时间是1-D,没有突起的是D,刚好和原边相反,但其KRP 的值和原边相同的这下知道了这个波形的有效值是怎么算的了吧,哦,再提醒一句,这个峰值电流就是原边峰值电流乘以其匝数比,要比原边峰值电流大数倍哦.
第七步确定反馈绕组的参数,反馈是反激的电压,其电压是取自输出级的,所以反馈电压是稳定的,TOP 的电源电压是5.7到9V,绕上7匝,那么其电压大概是6V多,这就可以了,记得,反馈电压是反激的,其匝数比要和幅边对应,懂什么意思吗,至于线,因为流过其的电流很小,所以就用绕原边的线绕就可以了,无严格的要求.
第八步,确定电感量.记得原边的电流上升公式吗I=VS*TON/L.因为你已经从上面画出了原边电流的波形,这个I就是:峰值电流*KRP,所以L=VS.TON/峰值电流*KRP,知道了吗,从此就确定了原边电感的值.
第九步,验证设计,即验证一下最大磁感应强度是不是超过了磁芯的允许值,有BMAX=L*IP/SJ*NP.这个五个参数分别表示磁通最大值,原边电感量,峰值电流,原边匝数,这个公式是从电感量L的概念公式推过来的,因为L=磁链/流过电感线圈的电流,磁链等于磁通乘以其匝数,而磁通就是磁感应强度乘以其截面积,分别代入到上面,即当原边线圈流过峰值电流时,此时磁芯达到最大磁感应强度,这个磁感应强度就用以上公式计算.BMAX的值一般bu要超过0.3T ,若是好的磁芯,可以大一些,若是超过了这个值,就可以增加原边匝数,或是换大的磁芯来调.
总结一下:
设计高频变压器,有几个参数要自己设定,这几个参数就决定了开关电源的工作方式,第一是要设定最大占空比D,这个占空比是由你自己设定的感应电压VOR来确定的,再就是设定原边电流的波形,确定KRP的值,设计变压器时,还要设定其磁芯振幅B,这又是一个设定,所有这些设定,就让这个开关电源工作在你设定的方式之下了.要不断的调整,工作在一个对你来说最好的状态之下,这就是高频变压器的设计任务.总结一下公式
D=VOR/(VOR+VS )(1)
IAVE=P/效率*VS      (2)
IP=IAVE/(1-0.5KRP)*D    (3)
I有效值=电流峰值*根号下的D*(KRP的平方/3-KRP+1) (4)
NP=VS*TON/SJ*B          (5)
NS=NP*(VO+VF)/VOR   (6)
L=VS.TON/IP.KRP      (7)
BMAX=L*IP/SJ.NP      (8)   

R88 发表于 2013-4-18 17:39:25

正激,感觉说的不是很细:
正激变换器磁性元件除了变压器外,还有一个电感器,即扼流圈。一般的资料上都是从变压器开始算起的,但本人认为应该从电感器开始算起比较好,这样比较明了,思维可以比较清楚。因为正激变换器起源于BUCK变换器,而BUCK变换器,其功率的心脏是储能电感,因此,正激变换器的功率心脏是扼流圈,而不是变压器,变压器只有负责变电压,并没有其它的功能,功率传输靠得是电感。当然一般书上从变压器算起,也未尝不可,但这样算,思路不是很明确,也不容易让读者理解。下面我演示一下我的算法,希望对读者能有所帮助。
电感器的设计:首先,以滤波电感为研究对象,进行研究。在一个周期中,开关管开通的时候,滤波电感两端被加上一个电压,其电流不是突变的,而是线性的上升的,有公式I=(V-Vo)*TON/L,这几项分别表示电感电流的增量,输入电压,开通时间,电感量。而这个电压是变压器副边放出的。在开关管关断的时候,电感器以一个恒定的电压放电,其电流即会线性的下降,同样遵守这个公式,即I=Vo*TOFF/L,一个周期中,放电电流等于充电电流,所以上两式相等,再用1-D代替TOFF,D代替TON,于是从上两式中得到Vo=V*D。画出电感两端的电压电流波形如下图。      

电感两端电压电流波形
上有电流波形,下为电压波形。所以,我设计的第一步就是确定这个原边电流的波形。
第一步,确定电感充电电压值。首先,确定开关管开通的时候,加在电感器两端的电压V,这个电压由设计者自己设定,选定这个电压后,最大占空比D即确定了。
第二步,设定电感电流的脉动值IR,不妨自己把电感电流的曲线图画出来,大概和上面的相似。然后再选定一个脉动电流的值,即上升了的电流或是下降的电流的值。因为输出功率和输出电压是已知的,那么平均电流值IO就是知道的。
第三步,根据上面的条件,确定这个电流的波形。要确定这个波形,要知道其峰值IP吧,上面的条件已经足够求出这个峰值了,有方程式IR/2+(IP-IR)=IO,解出IP=IO+IR/2
第四步,设定电感量。根据原边电流的波形,算出电感量小CASE,L=(V-Vo-Vf)*TON/IR。这个公式理解吧,就和上面那个一样的,不要说不理解啊。
第五步,确定此电流的效值IRMS,这一步用来确定线径。注意,确定线径用的是有效值,而不是平均值。这个电流波形的有效值公式是:IRMS=IP*根号下的〈(KRP的平方/3-KRP+1)*D〉+IP*根号下的〈(KRP的平方/3-KRP+1)(1-D)〉。这个公式推导需要积分比较繁难,我就不讲了,大家记着用就可以了。算出了电流值后,就可以确定线径了,要使有效值电流密度到四安每平方毫米到十安每平方毫米之间,这一点很重要,大家要切记啊。
以上几步,就完成了电感器的设计,并且以上几步,确定了一些重要的参数,这些参数将是下一步变压器设计的基础。
高频变压器的设计总说:正激变压器和反激变压器是大的区别就是正激变压器是不要开气隙的(me:开的),要求其电感量尽量大。正激变压器原边也有电流,但这个电流不是其自己通过输入电压储存来的,而是从副边电感上感应过来的,知道了这一点,正激变压器就好设计了。
第一步,确定原边匝数。当然首先自己要选一款磁芯啦.设原边输入最低电压是VS,导通时间用TON表示,还要自己设定一个磁芯振幅,一般我是取0.2到0.25T,因为正激变压器是不需直流分量的,所以相比反激而言这个值可以取大些,原边匝数NP=VS*TON/AE*B,其中AE是磁芯截面积.
第二步,确定副边匝数,因为在开关管开通的时候,副边要以V的电压放电,而这个V值,上面已经在设定开关管占空比的时候确定了,所以副边匝数NS=NP*V/VS
第三步,画出原边电流波形,算出原边电流波形的效值,从而确定线径.如下图所示,因为电流波形是从副边感应过来的,其波形就是电感电流波形开关管导通的那一部分.

这个电流的波形的峰值就是电感电流峰值除以匝数比,这个会算吧,于是这个电流波形的有效值=(IP*V/VS)* 根号下的〈(KRP的平方/3-KRP+1)*D>然后根据这个电流值去选线,电流密度同上.
第四步,确定副边电流的波形,求出副边电流波形的有效值来.副边电流的波形就是开关管开通时候电感电流的那一部分,这个波形和原边电流的波形相似,因为原边电流的波形就是由这个感应过去的,我就不画了,其有效值= IP*根号下的〈(KRP的平方/3-KRP+1)*D〉。依此去选线.
第五步,确定自馈电绕组,一般其和原边同名端相反,利用磁复位放出电压感应出电压来,我是这样做的,还有一些其它的方案,各位高手自已研究吧.

R88 发表于 2013-4-18 17:40:50

还有一个半桥的,感觉文章都没写完,就不发了!

xm3love 发表于 2013-4-18 20:42:14

MARK下{:smile:}

lgg88 发表于 2013-4-18 20:51:05

顶楼主   

bzbs 发表于 2013-4-18 21:27:26

刚刚开始学习开关电源,电源低压启动问题,正在头痛中!先学习了

R88 发表于 2013-4-19 00:39:54

接着来个基本拓扑介绍:随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40% -50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。为了提高效率,人们研制出了开关式稳压电源,它的效率可达85% 以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理
开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压Uo。可由公式计算,即Uo=Um×T1/T,式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路
1、基本电路

图二 开关电源基本电路框图
开关式稳压电源的基本电路框图如图二所示。交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源
单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。
3.单端正激式开关电源
单端正激式开关电源的典型电路如图四所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
4.自激式开关稳压电源
自激式开关稳压电源的典型电路如图五所示。这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。

当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2 中感应出使VT1 基极为正,发射极为负的正反馈电压,使VT1 很快饱和。与此同时,感应电压给C1充电,随着C1充电电压的增高,VT1基极电位逐渐变低,致使VT1退出饱和区,Ic 开始减小,在L2 中感应出使VT1 基极为负、发射极为正的电压,使VT1 迅速截止,这时二极管VD1导通,高频变压器T初级绕组中的储能释放给负载。在VT1截止时,L2中没有感应电压,直流供电输人电压又经R1给C1反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。这里就像单端反激式开关电源那样,由变压器T的次级绕组向负载输出所需要的电压。自激式开关电源中的开关管起着开关及振荡的双重作从,也省去了控制电路。电路中由于负载位于变压器的次级且工作在反激状态,具有输人和输出相互隔离的优点。这种电路不仅适用于大功率电源,亦适用于小功率电源。
5.推挽式开关电源
推挽式开关电源的典型电路如图六所示。它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。

这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。电路的输出功率较大,一般在100-500 W范围内。
6.降压式开关电源
降压式开关电源的典型电路如图七所示。当开关管VT1 导通时,二极管VD1 截止,输人的整流电压经VT1和L向C充电,这一电流使电感L中的储能增加。当开关管VT1截止时,电感L感应出左负右正的电压,经负载RL和续流二极管VD1释放电感L中存储的能量,维持输出直流电压不变。电路输出直流电压的高低由加在VT1基极上的脉冲宽度确定。

这种电路使用元件少,它同下面介绍的另外两种电路一样,只需要利用电感、电容和二极管即可实现。
7.升压式开关电源
升压式开关电源的稳压电路如图八所示。当开关管 VT1 导通时,电感L储存能量。当开关管VT1 截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。

8.反转式开关电源
反转式开关电源的典型电路如图九所示。这种电路又称为升降压式开关电源。无论开关管VT1之前的脉动直流电压高于或低于输出端的稳定电压,电路均能正常工作。

当开关管 VT1 导通时,电感L 储存能量,二极管VD1 截止,负载RL靠电容C上次的充电电荷供电。当开关管VT1截止时,电感L中的电流继续流通,并感应出上负下正的电压,经二极管VD1向负载供电,同时给电容C充电。

以上介绍了脉冲宽度调制式开关稳压电源的基本工作原理和各种电路类型,在实际应用中,会有各种各样的实际控制电路,但无论怎样,也都是在这些基础上发展出来的。

wugang_1213 发表于 2013-4-19 08:35:44

哈哈,正需要。最近要修个开关电源, 还得去图书馆借几本书,打打底子。{:lol:}

cqfeiyuxmj 发表于 2013-4-19 09:05:21

半桥呢?全桥呢?

262619890 发表于 2013-4-19 10:09:29

顺便把帖子里的几个文档上传上来,方便大家

jlian168 发表于 2013-4-19 11:59:43

mark,thanks.

R88 发表于 2013-4-19 12:25:21

再来个实际图文并茂的:
导读:目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流。个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。
●线性电源知多少
目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的3);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的4);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的5)


尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。
●开关电源知多少
开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的占空比以便能够适应电源的变压器(这个方法称作PWM,Pulse Width Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。
第2页:看图说话:图解开关电源
下图3和4描述的是开关电源的PWM反馈机制。图3描述的是没有PFC(Power Factor Correction,功率因素校正) 电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。


通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,后者没有110/220 V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。为了让读者能够更好的理解电源的工作原理,以上我们提供的是非常基本的图解,图中并未包含其他额外的电路,比如说短路保护、待机电路以及PG信号发生器等等。当然了,如果您还想了解一下更加详尽的图解,请看图5。如果看不懂也没关系,因为这张图本来就是为那些专业电源设计人员看的。

你可能会问,图5设计图中为什么没有电压整流电路?(me:倍压)事实上,PWM电路已经肩负起了电压整流的工作。输入电压在经过开关管之前将会再次校正,而且进入变压器的电压已经成为方形波。所以,变压器输出的波形也是方形波,而不是正弦波。由于此时波形已经是方形波,所以电压可以轻而易举的被变压器转换为DC直流电压。也就是说,当电压被变压器重新校正之后,输出电压已经变成了DC直流电压。这就是为什么很多时候开关电源经常会被称之为DC-DC转换器。馈送PWM控制电路的回路负责所有需要的调节功能。如果输出电压错误时,PWM控制电路就会改变工作周期的控制信号以适应变压器,最终将输出电压校正过来。这种情况经常会发生在PC功耗升高的时,此时输出电压趋于下降,或者PC功耗下降的时,此时输出电压趋于上升。在看下一页是,我们有必要了解一下以下信息:
★在变压器之前的所有电路及模块称为“primary”(一次侧),在变压器之后的所有电路及模块称为“secondary”(二次侧);
★采用主动式PFC设计的电源不具备110 V/ 220 V转换器,同时也没有电压倍压器;
★对于没有PFC电路的电源而言,如果110 V / 220 V被设定为110 V时,电流在进入整流桥之前,电源本身将会利用电压倍压器将110 V提升至220 V左右;
★PC电源上的开关管由一对功率MOSFET管构成,当然也有其他的组合方式,之后我们将会详解;
★变压器所需波形为方形波,所以通过变压器后的电压波形都是方形波,而非正弦波;
★PWM控制电流往往都是集成电路,通常是通过一个小的变压器与一次侧隔离,而有时候也可能是通过耦合芯片(一种很小的带有LED和光电晶体管的IC芯片)和一次侧隔离;
★PWM控制电路是根据电源的输出负载情况来控制电源的开关管的闭合的。如果输出电压过高或者过低时,PWM控制电路将会改变电压的波形以适应开关管,从而达到校正输出电压的目的;
下一页我们将通过图片来研究电源的每一个模块和电路,通过实物图形象的告诉你在电源中何处能找到它们。
第3页:看图说话:电源内部揭秘
当你第一次打开一台电源后(确保电源线没有和市电连接,否则会被电到),你可能会被里面那些奇奇怪怪的元器件搞得晕头转向,但是有两样东西你肯定认识:电源风扇和散热片。

但是您应该很容易就能分辨出电源内部哪些元器件属于一次侧,哪些属于二次侧。一般来讲,如果你看到一个(采用主动式PFC电路的电源)或者两个(无PFC电路的电源)很大的滤波电容的话,那一侧就是一次侧。
一般情况下,在电源的两个散热片之间都会安排3个变压器,比如说图7所示,主变压器是最大个的那颗;中等“体型”的那颗往往负责+5VSB输出,而最小的那颗一般用于PWM控制电路,主要用于隔离一次侧和二次侧部分(这也是为什么在上文图3和图4中的变压器上贴着“隔离器”的标签)。有些电源并不把变压器当“隔离器”来用,而是采用一颗或者多颗光耦(看起来像是IC整合芯片),也即说采用这种设计方案的电源只有两个变压器——主变压器和辅变压器。电源内部一般都有两个散热片,一个属于一次侧,另一个属于二次侧。如果是一台主动式PFC电源,那么它的在一次侧的散热片上,你可以看到开关管、PFC晶体管以及二极管。这也不是绝对的,因为也有些厂商可能会选择将主动式PFC组件安装到独立的散热片上,此时在一次侧会有两个散热片。在二次侧的散热片上,你会发现有一些整流器,它们看起来和三极管有点像,但事实上,它们都是有两颗功率二极管组合而成的。在二次侧的散热片旁边,你还会看到很多电容和电感线圈,共同共同组成了低压滤波模块——找到它们也就找到了二次侧。区分一次侧和二次侧更简单的方法就是跟着电源的线走。一般来讲,与输出线相连的往往是二次侧,而与输入线相连的是一次侧(从市电接入的输入线)。如图7所示。

以上我们从宏观的角度大致介绍了一下一台电源内部的各个模块。下面我们细化一下,将话题转移到电源各个模块的元器件上来……
第4页:瞬变滤波电路解析
市电接入PC开关电源之后,首先进入瞬变滤波电路(Transient Filtering),也就是我们常说的EMI电路。下图8描述的是一台PC电源的“推荐的”的瞬变滤波电路的电路图。

为什么要强调是“推荐的”的呢?因为市面上很多电源,尤其是低端电源,往往会省去图8中的一些元器件。所以说通过检查EMI电路是否有缩水就可以来判断你的电源品质的优劣。EMI电路电路的主要部件是MOV (l Oxide Varistor,金属氧化物压敏电阻),或者压敏电阻(图8中RV1所示),负责抑制市电瞬变中的尖峰。MOV元件同样被用在浪涌抑制器上(surge suppressors)。尽管如此,许多低端电源为了节省成本往往会砍掉重要的MOV元件。对于配备MOV元件电源而言,有无浪涌抑制器已经不重要了,因为电源已经有了抑制浪涌的功能。图8中的L1 and L2是铁素体线圈;C1 and C2为圆盘电容,通常是蓝色的,这些电容通常也叫Y电容;C3是金属化聚酯电容,通常容量为100nF、470nF或680nF,也叫“X”电容;有些电源配备了两颗X电容,和市电并联相接,如图8 RV1所示。X电容可以任何一种和市电并联的电容;Y电容一般都是两两配对,需要串联连接到火、零之间并将两个电容的中点通过机箱接地。也就是说,它们是和市电并联的。瞬变滤波电路不仅可以起到给市电滤波的作用,而且可以阻止开关管产生的噪声干扰到同在一根市电上的其他电子设备。一起来看几个实际的例子。如图9所示,你能看到一些奇怪之处吗?这个电源居然没有瞬变滤波电路!这是一款低廉的“山寨”电源。请注意,看看电路板上的标记,瞬变滤波电路本来应该有才对,但是却被丧失良知的黑心JS们带到了市场里。

再看图10实物所示,这是一款具备瞬变滤波电路的低端电源,但是正如我们看到的那样,这款电源的瞬变滤波电路省去了重要的MOV压敏电阻,而且只有一个铁素体线圈;不过这款电源配备了一个额外的X电容。

瞬变滤波电路分为一级EMI和二级EMI,很多电源的一级EMI往往会被安置在一个独立的PCB板上,靠近市电接口部分,二级EMI则被安置在电源的主PCB板上,如下图11和12所示。

再看这款电源的二级EMI。在这里我们能看到MOV压敏电阻,尽管它的安置位置有点奇怪,位于第二个铁素体的后面。总体而言,应该说这款电源的EMI电路是非常完整的。

值得一提的是,以上这款电源的MOV压敏电阻是黄色的,但是事实上大部分MOV都是深蓝色的。此外,这款电源的瞬变滤波电路还配备了保险管(图8中F1所示)。需要注意了,如果你发现保险管内的保险丝已经烧断了,那么可以肯定的是,电源内部的某个或者某些元器件是存在缺陷的。如果此时更换保险管的话是没有用的,当你开机之后很可能再次被烧断。
第5页:倍压器和一次侧整流电路
●倍压器和一次侧整流电路
上文已经说过,开关电源主要包括主动式PFC电源和被动式PFC电源,后者没有PFC电路,但是配备了倍压器(voltage doubler)。倍压器采用两颗巨大的电解电容,也就是说,如果你在电源内部看到两颗大号电容的话,那基本可以判断出这就是电源的倍压器。前面我们已经提到,倍压器只适合于127V电压的地区。


在倍压器的一侧可以看到整流桥。整流桥可以是由4颗二极管组成,也可以是有单个元器件组成,如图15所示。高端电源的整流桥一般都会安置在专门的散热片上。

在一次侧部分通常还会配备一个NTC热敏电阻——一种可以根据温度的变化改变电阻值的电阻器。NTC热敏电阻是Negative Temperature Coefficient的缩写形式。它的作用主要是用来当温度很低或者很高时重新匹配供电,和陶瓷圆盘电容比较相似,通常是橄榄色。
第6页:主动式PFC电路
●主动式PFC电路
毫无疑问,这种电路仅可以在配有主动PFC电路的电源中才能看到。图16描述的正是典型的PFC电路:

主动式PFC电路通常使用两个功率MOSFET开关管。这些开关管一般都会安置在一次侧的散热片上。为了易于理解,我们用在字母标记了每一颗MOSFET开关管:S表示源极(Source)、D表示漏极(Drain)、G表示栅极(Gate)。PFC二极管是一颗功率二极管,通常采用的是和功率晶体管类似的封装技术,两者长的很像,同样被安置在一次侧的散热片上,不过PFC二极管只有两根针脚。PFC电路中的电感是电源中最大的电感;一次侧的滤波电容是主动式PFC电源一次侧部分最大的电解电容。图16中的电阻器是一颗NTC热敏电阻,可以更加温度的变化而改变电阻值,和二级EMI的NTC热敏电阻起相同的作用。主动式PFC控制电路通常基于一颗IC整合电路,有时候这种整合电路同时会负责控制PWM电路(用于控制开关管的闭合)。这种整合电路通常被称为 “PFC/PWM combo”.照旧,先看一些实例。在图17中,我们将一次侧的散热片去除之后可以更好的看到元器件。右侧是瞬变滤波电路的二级EMI电路,上文已经详细介绍过;再看左侧,全部都是主动式PFC电路的组件。由于我们已经将散热片去除,所以在图片上已经看不到PFC晶体管以及PFC二极管了。此外,稍加留意的话可以看到,在整流桥和主动式PFC电路之间有一个X电容(整流桥散热片底部的棕色元件)。通常情况下,外形酷似陶制圆盘电容的橄榄色热敏电阻都会有橡胶皮包裹。

图18是一次侧散热片上的元件。这款电源配备了两个MOSFET开关管和主动式PFC电路的功率二极管:

下面我们将重点介绍开关管……
第7页:开关管
●开关管
开关电源的开关逆变级可以有多种模式,我们总结了一下几种情况:

当然了,我们只是分析某种模式下到底需要多少元器件,事实上当工程师们在考虑采用哪种模式时还会收到很多因素制约。目前最流行的两种模式时双管正激(two-transistor forward)和推挽式(push-pull)设计,两者均使用了两颗开光管。这些被安置在一次侧散热片上的开光管我们已经在上一页有所介绍,这里就不做过多赘述。以下是这五种模式的设计图:





第8页:变压器和PWM控制电路
●变压器和PWM控制电路
先前我们已经提到,PC电源一般都会配备3个变压器:个头最大的那颗是之前图3、4和图19-23上标示出来的主变压器,它的一次侧与开关管相连,二次侧与整流电路与滤波电路相连,可以提供电源的低压直流输出(+12V,+5V,+3.3V,-12V,-5V)。最小的那颗变压器负载+5VSB输出,通常也成为待机变压器,随时处于“待命状态”,因为这部分输出始终是开启的,即便是PC电源处于关闭状态也是如此。第三个变压器室隔离器,将PWM控制电路和开关管相连。并不是所有的电源都会装备这个变压器,因为有些电源往往会配备具备相同功能的光耦整合电路。


PWM控制电路基于一块整合电路。一般情况下,没有装备主动式PFC的电源都会采用TL494整合电路(下图26中采用的是可兼容的DBL494整合芯片)。具备主动式PFC电路的电源里,有时候也会采用一种用来取代PWM芯片和PFC控制电路的芯片。CM6800芯片就是一个很好的例子,它可以很好的集成PWM芯片和PFC控制电路的所有功能。

第9页:二次侧(一)
●二次侧
最后要介绍的是二次侧。在二次侧部分,主变压器的输出将会被整流和过滤,然后输出PC所需要的电压。-5 V和–12 V的整流是只需要有普通的二极管就能完成,因为他们不需要高功率和大电流。不过+3.3 V, +5 V以及+12 V等正压的整流任务需要由大功率肖特基整流桥才行。这种肖特基有三个针脚,外形和功率二极管比较相似,但是它们的内部集成了两个大功率二极管。二次侧整流工作能否完成是由电源电路结构决定,一般有可能会有两种整流电路结构,如图27所示:

模式A更多的会被用于低端入门级电源中,这种模式需要从变压器引出三个针脚。模式B则多用于高端电源中,这种模式一般只需要配备两个变压器,但是铁素体电感必须够大才行,所以这种模式成本较高,这也是为什么低端电源不采用这种模式的主要原因。此外,对于高端电源而言,为了提升最大电流输出能力,这些电源往往会采用两颗二极管串联的方式将整流电路的最大电流输出提升一倍。无论是高端还是低端电源,其+12 V和+5 V的输出都配备了完整的整流电路和滤波电路,所以所有的电源至少都需要2组图27所示的整流电路。对于3.3V输出而言,有三种选项可供选择:
☆在+5 V输出部分增加一个3.3V的电压稳压器,很多低端电源都是采用的这种设计方案;
☆为3.3 V输出增加一个像图27所示的完整的整流电路和滤波电路,但是需要和5 V整流电路共享一个变压器。这是高端电源比较普通的一种设计方案。
☆采用一个完整的独立的3.3V整流电路和滤波电路。这种方案非常罕见,仅在少数发烧级顶级电源中才可能出现,比如说安耐美的银河1000W。
由于3.3V输出通常是完全公用5V整流电路(常见于低端电源)或者部分共用(常见于高端电源中),所以说3.3V输出往往会受到5V输出的限制。这就是为什么很多电源要在铭牌中著名“3.3V和5V联合输出”。下图28是一台低端电源的二次侧。这里我们可以看到负责产生PG信号的整合电路。通常情况下,低端电源都会采用LM339整合电路。

此外,我们还可以看到一些电解电容(这些电容的个头和倍压器或者主动式PFC电路的电容相比要小的多)和电感,这些元件主要是负责滤波功能。为了更清晰的观察这款电源,我们将电源上的飞线以及滤波线圈全部移除,如图29所示。在这里我们能看到一些小的二极管,主要用于-12 V and –5 V的整流,通过的电流非常小(这款电源只要0.5A)。其他的电压输出的电流至少要1A,这需要功率二极管负责整流。

第10页:二次侧(二)
●二次侧(2)
下图30描述的是低端电源二次侧散热片上的元器件:

从左至右以此为:
☆稳压器IC芯片——尽管它有三个针脚而且看起来和三极管非常相似,但是它却是IC芯片。这款电源采用的是7805稳压器(5V稳压器),负责+5VSB的稳压。之前我们已经提到过,+5VSB采用的是独立的输出电路,因为它即便是在PC处于断电状态时依然需要向+5VSB提供+5 V输出。这就是为什么+5VSB输出也通常会被称之为“待机输出”。7805 IC最大可以提供1A的电流输出。
☆功率MOSFET晶体管,主要负责3.3V输出。这款电源的MOSFET型号为PHP45N03LT,最大可允许45A的电流通过。上一页我们已经提到,只有低端电源才会采用和5V共享的3.3V稳压器。
☆功率肖特基整流器,由两个二极管整合而成。这款电源的肖特基型号为STPR1620CT,它的每颗二极管最大可允许8A的电流通过(总共为16A)。这种功率肖特基整流器通常被用于12V输出。
☆另一颗功率肖特基整流器。这款电源采用的型号是E83-004,最大可允许60A电流通过。这种功率整流器常被用于+5 V和+ 3.3 V输出。因为+5 V和+ 3.3 V输出采用的是同一个整流器,所以它们的总和不能超过整流器的电流限制。这就是我们常说的联合输出的概念。换句话说就是3.3V输出来自5V输出。和其他各路输出不同,变压器没有3.3V输出。这种设计常用于低端电源。高端电源一般都会采用独立的+3.3 V和+5 V输出。下面来看看高端电源的二次侧主要元件:


这里我们可以看到:两颗并联的负责12V输出的功率肖特基整流器。低端电源往往只有一颗这样的整流器。这种设计自然让整流器的最大电流输出翻了一倍。这款电源采用的是两颗STPS6045CW肖特基整流器,每颗最大可运行60A电流通过。
☆一颗负责5V输出的肖特基整流器。这款电源采用的是STPS60L30CW整流器,最大可允许60A电流通过。
☆一颗负责3.3V输出的肖特基整流器,这是高端电源和低端电源的主要区别(低端电源往往没有单独的3.3V输出)。这款电源采用的是STPS30L30CT肖特基,最大可允许30A电流通过。
☆一颗电源保护电路的稳压器。这也是高端电源的象征。
主要指出的是,以上我们所说的最大电流输出是仅仅是相对于单个元器件而言的。一款电源的最大电流输出实际上要取决于与之相连的很多元器件的品质,比如说线圈电感、变压器、线材的粗细以及PCB电路板的宽窄等等。我们可以通过整流器的最大电流和输出的电压相乘得出电源理论上的最大功率。比如说,图30中的电源的12V输出最大功率应该为16A*12V=192W。
转自:http://www.hugesky.com/htm/weixiujiqiao/weixiuziliao/showarticle_id5242.htm

R88 发表于 2013-4-19 18:11:58

没人顶啊!有人顶我继续啊,这里只发基础性的文章,高深点的去各大半导体官网下载应用文档看即可!

LK9286 发表于 2013-4-22 21:38:49

收藏了哈!!!

R88 发表于 2013-4-24 16:15:19

有人顶了继续:
第一部分:功率电子器件
第一节:功率电子器件及其应用要求
功率电子器件大量被应用于电源、伺服驱动、变频器、电机保护器等功率电子设备。这些设备都是自动化系统中必不可少的,因此,我们了解它们是必要的。近年来,随着应用日益高速发展的需求,推动了功率电子器件的制造工艺的研究和发展,功率电子器件有了飞跃性的进步。器件的类型朝多元化发展,性能也越来越改善。大致来讲,功率器件的发展,体现在如下方面:器件能够快速恢复,以满足越来越高的速度需要。以开关电源为例,采用双极型晶体管时,速度可以到几十千赫;使用MOSFET和IGBT,可以到几百千赫;而采用了谐振技术的开关电源,则可以达到兆赫以上。通态压降(正向压降)降低。这可以减少器件损耗,有利于提高速度,减小器件体积。电流控制能力增大。电流能力的增大和速度的提高是一对矛盾,目前最大电流控制能力,特别是在电力设备方面,还没有器件能完全替代可控硅。额定电压:耐压高。耐压和电流都是体现驱动能力的重要参数,特别对电力系统,这显得非常重要。温度与功耗。这是一个综合性的参数,它制约了电流能力、开关速度等能力的提高。目前有两个方向解决这个问题,一是继续提高功率器件的品质,二是改进控制技术来降低器件功耗,比如谐振式开关电源。总体来讲,从耐压、电流能力看,可控硅目前仍然是最高的,在某些特定场合,仍然要使用大电流、高耐压的可控硅。但一般的工业自动化场合,功率电子器件已越来越多地使用MOSFET和IGBT,特别是IGBT获得了更多的使用,开始全面取代可控硅来做为新型的功率控制器件。
第二节:功率电子器件概览
一.整流二极管:二极管是功率电子系统中不可或缺的器件,用于整流、续流等。目前比较多地使用如下三种选择:高效快速恢复二极管。压降0.8-1.2V,适合小功率,12V左右电源。高效超快速二极管。0.8-1.2V,适合小功率,12V左右电源。肖特基势垒整流二极管SBD。0.4V,适合5V等低压电源。缺点是其电阻和耐压的平方成正比,所以耐压低(200V以下),反向漏电流较大,易热击穿。但速度比较快,通态压降低。目前SBD的研究前沿,已经超过1万伏。
二.大功率晶体管GTR
分为:单管形式。电流系数:10-30。双管形式——达林顿管。电流倍数:100-1000。饱和压降大,速度慢。下图虚线部分即是达林顿管。

图1-1:达林顿管应用
实际比较常用的是达林顿模块,它把GTR、续流二极管、辅助电路做到一个模块内。在较早期的功率电子设备中,比较多地使用了这种器件。图1-2是这种器件的内部典型结构。

图1-2:达林顿模块电路典型结构
两个二极管左侧是加速二极管,右侧为续流二极管。加速二极管的原理是引进了电流串联正反馈,达到加速的目的。这种器件的制造水平是1800V/800A/2KHz、600V/3A/100KHz左右(参考)。
三.可控硅SCR
可控硅在大电流、高耐压场合还是必须的,但在常规工业控制的低压、中小电流控制中,已逐步被新型器件取代。目前的研制水平在12KV/8000A左右(参考)。由于可控硅换流电路复杂,逐步开发了门极关断晶闸管GTO。制造水平达到8KV/8KA,频率为1KHz左右。无论是SCR还是GTO,控制电路都过于复杂,特别是需要庞大的吸收电路。而且,速度低,因此限制了它的应用范围拓宽。集成门极换流晶闸管IGCT和MOS关断晶闸管之类的器件在控制门极前使用了MOS栅,从而达到硬关断能力。
四.功率MOSFET
又叫功率场效应管或者功率场控晶体管。其特点是驱动功率小,速度高,安全工作区宽。但高压时,导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。适合低压100V以下,是比较理想的器件。
目前的研制水平在1000V/65A左右(参考)。商业化的产品达到60V/200A/2MHz、500V/50A/100KHz。是目前速度最快的功率器件。
五.IGBT
又叫绝缘栅双极型晶体管。
这种器件的特点是集MOSFET与GTR的优点于一身。输入阻抗高,速度快,热稳定性好。通态电压低,耐压高,电流大。目前这种器件的两个方向:一是朝大功率,二是朝高速度发展。大功率IGBT模块达到1200-1800A/1800-3300V的水平(参考)。速度在中等电压区域(370-600V),可达到150-180KHz。它的电流密度比MOSFET大,芯片面积只有MOSFET的40%。但速度比MOSFET低。尽管电力电子器件发展过程远比我们现在描述的复杂,但是MOSFET和IGBT,特别是IGBT已经成为现代功率电子器件的主流。因此,我们下面的重点也是这两种器件。
第三节:功率场效应管MOSFET
功率场效应管又叫功率场控晶体管。
一.原理:
半导体结构分析略。本讲义附加了相关资料,供感兴趣的同事可以查阅。实际上,功率场效应管也分结型、绝缘栅型。但通常指后者中的MOS管,即MOSFET(Metal Oxide Semiconductor Field Effect Transistor)。
它又分为N沟道、P沟道两种。器件符号如下:

图1-3:MOSFET的图形符号
MOS器件的电极分别为栅极G、漏极D、源极S。和普通MOS管一样,它也有:耗尽型:栅极电压为零时,即存在导电沟道。无论VGS正负都起控制作用(正时还起作用么?)。增强型:需要正偏置栅极电压,才生成导电沟道。达到饱和前,VGS正偏越大,IDS越大。一般使用的功率MOSFET多数是N沟道增强型。而且不同于一般小功率MOS管的横向导电结构,使用了垂直导电结构,从而提高了耐压、电流能力,因此又叫VMOSFET。
二.特点:
这种器件的特点是输入绝缘电阻大(1万兆欧以上),栅极电流基本为零。驱动功率小,速度高,安全工作区宽。但高压时,导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。适合低压100V以下,是比较理想的器件。目前的研制水平在1000V/65A左右(参考)。其速度可以达到几百KHz,使用谐振技术可以达到兆级。
三.参数与器件特性:
无载流子注入,速度取决于器件的电容充放电时间,与工作温度关系不大,故热稳定性好。
(1)转移特性:ID随UGS变化的曲线,成为转移特性。从下图可以看到,随着UGS的上升,跨导将越来越高。

(2)输出特性(漏极特性):输出特性反应了漏极电流随VDS变化的规律。这个特性和VGS又有关联。下图反映了这种规律。图中,爬坡段是非饱和区,水平段为饱和区,靠近横轴附近为截止区,这点和GTR有区别。

VGS=0时的饱和电流称为饱和漏电流IDSS。
(3)通态电阻Ron:
通态电阻是器件的一个重要参数,决定了电路输出电压幅度和损耗。该参数随温度上升线性增加。而且VGS增加,通态电阻减小。
(4)跨导:
MOSFET的增益特性称为跨导。定义为:Gfs=ΔID/ΔVGS,显然,这个数值越大越好,它反映了管子的栅极控制能力。
(5)栅极阈值电压
栅极阈值电压VGS是指开始有规定的漏极电流(1mA)时的最低栅极电压。它具有负温度系数,结温每增加45度,阈值电压下降10%。
(6)电容
MOSFET的一个明显特点是三个极间存在比较明显的寄生电容,这些电容对开关速度有一定影响。偏置电压高时,电容效应也加大,因此对高压电子系统会有一定影响。有些资料给出栅极电荷特性图,可以用于估算电容的影响。以栅源极为例,其特性如下:

可以看到:器件开通延迟时间内,电荷积聚较慢。随着电压增加,电荷快速上升,对应着管子开通时间。最后,当电压增加到一定程度后,电荷增加再次变慢,此时管子已经导通。
(7)正向偏置安全工作区及主要参数
MOSFET和双极型晶体管一样,也有它的安全工作区。不同的是,它的安全工作区是由四根线围成的。最大漏极电流IDM:这个参数反应了器件的电流驱动能力。最大漏源极电压VDSM:它由器件的反向击穿电压决定。最大漏极功耗PDM:它由管子允许的温升决定。漏源通态电阻Ron:这是MOSFET必须考虑的一个参数,通态电阻过高,会影响输出效率,增加损耗。所以,要根据使用要求加以限制。

第四节:绝缘栅双极晶体管IGBT
又叫绝缘栅双极型晶体管。
一.原理:半导体结构分析略。本讲义附加了相关资料,供感兴趣的同事可以查阅。该器件符号如下:

注意,它的三个电极分别为门极G、集电极C、发射极E。

IGBT的等效电路图。
上面给出了该器件的等效电路图。实际上,它相当于把MOS管和达林顿晶体管做到了一起。因而同时具备了MOS管、GTR的优点。
二.特点:
这种器件的特点是集MOSFET与GTR的优点于一身。输入阻抗高,速度快,热稳定性好。通态电压低,耐压高,电流大。它的电流密度比MOSFET大,芯片面积只有MOSFET的40%。但速度比MOSFET略低。大功率IGBT模块达到1200-1800A/1800-3300V的水平(参考)。速度在中等电压区域(370-600V),可达到150-180KHz。
三.参数与特性:
(1)转移特性

这个特性和MOSFET极其类似,反映了管子的控制能力。
(2)输出特性

它的三个区分别为:靠近横轴:正向阻断区,管子处于截止状态。爬坡区:饱和区,随着负载电流Ic变化,UCE基本不变,即所谓饱和状态。水平段:有源区。
(3)通态电压Von:

IGBT通态电压和MOSFET比较。
所谓通态电压,是指IGBT进入导通状态的管压降VDS,这个电压随VGS上升而下降。由上图可以看到,IGBT通态电压在电流比较大时,Von要小于MOSFET。MOSFET的Von为正温度系数,IGBT小电流为负温度系数,大电流范围内为正温度系数。
(4)开关损耗:
常温下,IGBT和MOSFET的关断损耗差不多。MOSFET开关损耗与温度关系不大,但IGBT每增加100度,损耗增加2倍。开通损耗IGBT平均比MOSFET略小,而且二者都对温度比较敏感,且呈正温度系数。两种器件的开关损耗和电流相关,电流越大,损耗越高。
(5)安全工作区与主要参数ICM、UCEM、PCM:
IGBT的安全工作区是由电流ICM、电压UCEM、功耗PCM包围的区域。

最大集射极间电压UCEM:取决于反向击穿电压的大小。最大集电极功耗PCM:取决于允许结温。最大集电极电流ICM:则受元件擎住效应限制。所谓擎住效应问题:由于IGBT存在一个寄生的晶体管,当IC大到一定程度,寄生晶体管导通,栅极失去控制作用。此时,漏电流增大,造成功耗急剧增加,器件损坏。安全工作区随着开关速度增加将减小。
(6)栅极偏置电压与电阻
IGBT特性主要受栅极偏置控制,而且受浪涌电压影响。其di/dt明显和栅极偏置电压、电阻Rg相关,电压越高,di/dt越大,电阻越大,di/dt越小。而且,栅极电压和短路损坏时间关系也很大,栅极偏置电压越高,短路损坏时间越短。

R88 发表于 2013-4-25 23:47:40

本帖最后由 R88 于 2013-4-26 00:02 编辑

第二部分:开关电源基础
第一节:开关电源的基本控制原理
一.开关电源的控制结构:
一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。如果细致划分,它包括:输入滤波、输入整流、开关电路、采样、基准电源、比较放大、震荡器、V/F转换、基极驱动、输出整流、输出滤波电路等。实际的开关电源还要有保护电路、功率因素校正电路、同步整流驱动电路及其它一些辅助电路等。下面是一个典型的开关电源原理框图,掌握它对我们理解开关电源有重要意义。
根据控制类型不同,PM(脉冲调制)电路可能有多种形式。这里是典型的PFM结构。

二.开关电源的构成原理:
(一)输入电路:
线性滤波电路、浪涌电流抑制电路、整流电路。作用:把输入电网交流电源转化为符合要求的开关电源直流输入电源。1.线性滤波电路:抑制谐波和噪声。2.浪涌滤波电路:抑制来自电网的浪涌电流。3.整流电路:把交流变为直流。有电容输入型、扼流圈输入型两种,开关电源多数为前者。
(二)变换电路:
含开关电路、输出隔离(变压器)电路等,是开关电源电源变换的主通道,完成对带有功率的电源波形进行斩波调制和输出。这一级的开关功率管是其核心器件。
1.开关电路
驱动方式:自激式、他激式。变换电路:隔离型、非隔离型、谐振型。功率器件:最常用的有GTR、MOSFET、IGBT。调制方式:PWM、PFM、混合型三种。PWM最常用。
2.变压器输出
分无抽头、带抽头。半波整流、倍流整流时,无须抽头,全波时必须有抽头。
(三)控制电路:
向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。基准电路:提供电压基准。如并联型基准LM358、AD589,串联型基准AD581、REF192等。采样电路:采取输出电压的全部或部分。比较放大:把采样信号和基准信号比较,产生误差信号,用于控制电源PM电路。V/F变换:把误差电压信号转换为频率信号。振荡器:产生高频振荡波。基极驱动电路:把调制后的振荡信号转换成合适的控制信号,驱动开关管的基极。
(四)输出电路:
整流、滤波。把输出电压整流成脉动直流,并平滑成低纹波直流电压。输出整流技术现在又有半波、全波、恒功率、倍流、同步等整流方式。
第二节:各类拓补结构电源分析
一.非隔离型开关变换器
(一)降压变换器
Buck电路:降压斩波器,入出极性相同。由于稳态时,电感充放电伏秒积相等,因此:
(Ui-Uo)*ton=Uo*toff,
Ui*ton-Uo*ton=Uo*toff,
Ui*ton=Uo(ton+toff),
Uo/Ui=ton/(ton+toff)= D
即输入输出电压关系为:Uo/Ui=D(占空比)。

在开关管S通时,输入电源通过L平波和C滤波后向负载端提供电流;当S关断后,L通过二极管续流,保持负载电流连续。输出电压因为占空比作用,不会超过输入电源电压。
(二)升压变换器
Boost电路:升压斩波器,入出极性相同。利用同样的方法,根据稳态时电感L的充放电伏秒积相等的原理,可以推导出电压关系:
Uo/Ui=1/(1-D)

这个电路的开关管和负载构成并联。在S通时,电流通过L平波,电源对L充电。当S断时,L向负载及电源放电,输出电压将是输入电压Ui+UL,因而有升压作用。
(三)逆向变换器
Buck-Boost电路:升/降压斩波器,入出极性相反,电感传输。
电压关系:Uo/Ui=-D/(1-D)

S通时,输入电源仅对电感充电,当S断时,再通过电感对负载放电来实现电源传输。所以,这里的L是用于传输能量的器件。
(四)丘克变换器
Cuk电路:升/降压斩波器,入出极性相反,电容传输。在输入输出段均有电感,可以显著减小输入和输出电流的脉动,输出电压的极性和输入电压相反,输出电压既可以低于也可以高于输入电压。Cuk变换器可看做是Boost变换器和Buck变换器串联而成,合并了开关管。Cuk变换器有CCM和DCM两种工作方式,但不是指电感电流,而是指流过二极管的电流连续或断续。

电压关系:Uo/Ui=-D/(1-D)
当开关S闭合时,Ui对L1充电。当S断开时,Ui+EL1通过VD对C1进行充电。再当S闭合时,VD关断,C1通过L2、C2滤波对负载放电,L1继续充电。这里的C1用于传递能量,而且输出极性和输入相反。
二.隔离型开关变换器
1.推挽型变换器,下面是推挽型变换器的电路。

S1和S2轮流导通,将在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C滤波,送给负载。由于电感L在开关之后,所以当变比为1时,它实际上类似于降压变换器。
2.半桥型变换器
半桥型变换器的电路图。

当S1和S2轮流导通时,一次侧将通过电源-S1-T-C2-电源及电源-C1-T-S2-电源产生交变电流,从而在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C滤波,送给负载。同样地,这个电路也相当于降压式拓补结构。
3.全桥型变换器
下图是全桥变换器电路。

当S1、S3和S2、S4两两轮流导通时,一次侧将通过电源-S2-T-S4-电源及电源-S1-T-S3-电源产生交变电流,从而在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C滤波,送给负载。这个电路也相当于降压式拓补结构。
4.正激型变换器
下图为正激式变换器。

当S导通时,原边经过输入电源-N1-S-输入电源,产生电流。当S断开时,N1能量转移到N3,经N3-电源-VD3向输入端释放能量,避免变压器过饱和。VD1用于整流,VD2用于S断开期间续流。
5.隔离型Cuk变换器
隔离型Cuk变换器电路如下所示:

当S导通时,Ui对L1充电。当S断开时,Ui+EL1对C11及变压器原边冲电,同时给C11充电,电流方向从上向下。附边感应出脉动直流信号,通过VD对C12反向充电。在S导通期间,C12的反压将使VD关断,并通过L2、C2滤波后,对负载放电。这里的C12明显是用于传递能量的,所以Cuk电路是电容传输变换电路。
6.电流变换器
能量回馈型电流变换器电路如下图所示。

该电路与推挽电路类似。不同的是,在主通路上串联了一个电感。其作用是在S1、S2断开期间,使得变压器能量转移到N3绕组,通过VD3回馈到输入端。
下面是升压型变换器的电路图:

该电路也与推挽电路类似,并在主通路上串联了一个电感。在开关导通期间,L积蓄能量。当一侧开关断开时,电感电动势和Ui叠加在一起,对另一侧放电。因此,L有升压作用。
三.准谐振型变换器
在脉冲调制电路中,加入R、L谐振电路,使得流过开关的电流及管子两端的压降为准正弦波。这种开关电源成为谐振式开关电源。利用一定的控制技术,可以实现开关管在电流或电压波形过零时切换,这样对缩小电源体积,增大电源控制能力,提高开关速度,改善纹波都有极大好处。所以谐振开关电源是当前开关电源发展的主流技术。又分为:1.ZCS——零电流开关。开关管在零电流时关断。2.ZVS——零电压开关。开关管在零电压时关断。具体关于这个技术的简单介绍,见后面相关内容。
四.开关电源的分类总结
开关电源的分类
(一)按控制方式:
脉冲调制变换器:驱动波形为方波。PWM、PFM、混合式。
谐振式变换器:驱动波形为正弦波。又分ZCS(零电流谐振开关)、ZVS(零电压谐振开关)两种。
(二)电压转换形式:
1.AC/DC:一次电源。即整流电源。
2.DC/DC:二次电源。
1)Buck电路:降压斩波器,入出极性相同。
2)Boost:升压斩波器,入出极性相同。
3)Buck-Boost:升/降压斩波器,入出极性相反,电感传输。
4)Cuk:升/降压斩波器,入出极性相反,电容传输。
(三)按拓补结构:
1.隔离型:有变压器。
2.非隔离型:无变压器。
第三节:谐振式电源与软开关技术
本节讨论谐振式开关电源的有关知识。
§2-3-1.电路的谐振现象
为了更好地理解谐振式电源,这里回忆一下电路谐振的条件及其特点。
一、串联电路的谐振
一个R、L、C串联电路,在正弦电压作用下,其复阻抗:Z=R+j(ωL-1/ωC),一定条件下,使得XL=XC,即ωL=1/ωC ,Z=R,此时的电路状态称为串联谐振。明显地,串联谐振的特点是:
1.阻抗角等于零,电路呈纯电阻性,因而电路端电压U和电流I同相。
2.此时的阻抗最小,电路电流有效值达到最大。
3.谐振频率:ωo=1/√LC。
4.谐振系数或品质因素:Q=ωoL/R=1/ωoCR=(√L/C)/R。由于串联谐振时,L、C电压彼此抵消,因此也称为电压谐振。从外部看,L、C部分类似于短路。而此时Uc、UL是输入电压U的Q倍。Q值越大,振荡越强。这里的Z0=√L/C,我们称为特性阻抗,它决定了谐振的强度。
5.谐振发生时,C、L中的能量不断互相转换,二者之间反复进行充放电过程,形成正弦波振荡。
二、并联电路的谐振
一个R、L、C并联电路,在正弦电压作用下,其复导纳:Y=1/R-j(1/ωL-ωC),一定条件下,使得YL=YC,即1/ωL=ωC ,Y=1/R,此时的电路状态称为并联谐振。
明显地,串并谐振的特点是:
1.导纳角等于零,电路呈纯电阻性,因而电路端电压U和电流I同相。
2.此时的导纳最小,电路电流有效值达到最小。
3.谐振频率:ωo=1/√LC。
4.由于并联谐振时,L、C电流彼此抵消,因此也称为电流谐振。从外部看,L、C部分类似于开路,L、C各自有效电流却达到最大。
5.谐振发生时,C、L中的能量不断互相转换,二者之间反复进行充放电过程,形成正弦波振荡。
§2-3-2.谐振式电源的基本原理
谐振式电源是新型开关电源的发展方向。它利用谐振电路产生正弦波,在正弦波过零时切换开关管,从而大大提高了开关管的控制能力,并减小了电源体积。同时,也使得电源谐波成分大为降低。另外,电源频率得到大幅度提高。PWM一般只能达到几百K,但谐振开关电源可以达到1M以上。普通传统的开关电源功率因素在0.4-0.7,谐振式电源结合功率因素校正技术,功率因素可以达到0.95以上,甚至接近于1。从而大大抑制了对电网的污染。这种开关电源又分为:
1.ZCS——零电流开关。开关管在零电流时关断。
2.ZVS——零电压开关。开关管在零电压时关断。
在脉冲调制电路中,加入L、C谐振电路,使得流过开关的电流及管子两端的压降为准正弦波。下面是这两种开关的简单原理图。

ZCS电流谐振开关中,Lr、Cr构成的谐振电路通过Lr的谐振电流通过S,我们可以控制开关在电流过零时进行切换。这个谐振电路的电流是正弦波,而Us为矩形波电压。ZVS电压谐振开关中,Lr、Cr构成的谐振电路的Cr端谐振电压并联到S,我们可以控制开关在电压过零时进行切换。这个谐振电路的电压是正弦波,而Is接近矩形波。以上两种电路,由于开关切换时,电流、电压重叠区很小,所以切换功率也很小。
以上开关电源是半波的,当然也可以设计成全波的。所以又有半波谐振开关和全波谐振开关的区分。
§2-3-3.谐振开关的动态过程分析
实际上,谐振开关中的所谓“谐振”并不是真正理论上的谐振,而是L、C电路在送电瞬间产生的一个阻尼振荡过程。下面,我们对这个过程做一些分析,以了解谐振开关的工作原理。
一、零电流开关
实际的零电流开关谐振部分拓补又分L型和M型。如下面两组图形所示:

图2-14:L型零电流谐振开关(中半波,右全波)

图2-15:M型零电流谐振开关(中半波,右全波)
这里的L1用于限制di/dt,C1用于传输能量,在开关导通时,构成串联谐振。用零电流开关替代PWM电路的半导体开关,可以组成谐振式变换器电路。按照Buck电路的拓补结果,可以得到如下电路:



这里,我们分析一下L型电路的工作过程:假定这是一个理想器件组成的电源。L2远大于L1,从L2左侧看,可以认为流过L2、C2、RL的输出电流是一个恒流源,电流I0。谐振角频率:ω0=1/√L1C1。特性阻抗:Z0 =√L1/C1)。
动态过程如下:
1.线性阶段(t0-t1):在S导通前,VD2处于续流阶段。此时VVD2=VC1=0。S导通时,L1电流由0开始上升,由于续流没有结束,此时初始VL1=Vi。由VL1=Vi=L1di/dt,且L1初始电流为0,有:
i1=Vi(t-t0)/L1----------------------------------式1
到t1时刻,达到负载电流I0,因此:此阶段持续时间:
T1=t1-t0=L1I0/Vi
由式1,可以看出,此阶段i1是时间的线性函数。
2.谐振阶段(t1-t2):在电流i1上升期间,当i1小于I0时,由于i1无法供应恒流I0,续流过程将维持。当i1=I0时,将以i1-I0对C1充电,VD2开始承受正压,VD2电流下降并截止。L1、C1开始串联谐振,i1 因谐振继续上升。
iC1=C1dVC1/dt=i1-I0
VL1=L1di1/dt=Vi-VC1
因而:i1=I0+ iC1=I0+Vi/Z0*sinω0 (t-t1)------------------式2
其中,iC1为谐振电流。
VC1=Vi-VL1= Vi -Vicosω0 (t-t1)= Vi --式3
谐振到ta时刻,谐振电流归零。如为半波开关,则开关自行关断;如果是全波开关,开关关断后,将通过VD1进行阻尼振荡,将电容能量馈送回电源,到时刻tb电流第二次为0。本阶段结束,这时的时刻为t2。
VC1在i1谐振半个周期,i1=I0时,达最大值。i1第一次过零(ta)时,S断开。如为半波开关,则谐振阶段结束。如为全波开关,C1经半个周期的阻尼振荡到电流为0(tb)时,将放电到一个较小值。从式2、3,可以看出谐振阶段ta前,i1、VC1是时间的正弦函数;如为全波开关,还有一段时间的阻尼振荡波。
3.恢复阶段(t2-t3):由于VC1滞后1/4个谐振周期,因而在t2后,因L2的作用还将继续向负载放电,直至VC1=0。这阶段,如考虑电流方向性:
I0=-C1dVC1/dt
故:VC1= VC1(t2)-I0(t-t2)/C1------------------------------------式4
因此,这个阶段的VC1是时间的线性函数,电压从VC1(t2)逐步下降到零。如为半波开关,则开关分压也将线性上升到输入电源值。
4.续流阶段(t3-t4):当电容放电到零后,VD2因反压消失而导通,对L2及负载进行续流,以保持电流I0连续。此时,我们可以根据电路的要求,选择在适当时间再次开通S,重新开始线性阶段。
根据以上导出的各公式,可以得到如下的波形图:

从以上分析可以看出,ZCS谐振开关变换器的开关管总是在电流为0时进行切换。实际情况与理想分析有所不同,VC1将有所超前。M型电路分析方法类似,不再赘述。
二、零电压开关
ZCS在S导通时谐振,而ZVS则在S截止时谐振,二者形成对偶关系。分析过程大体类似,此处从略。综合以上分析过程,我们可以看出,该拓补谐振结构只能实现PFM调节,而无法实现PWM。原因是脉冲宽度仅受谐振参数控制。要实现PWM,还需要增加辅助开关管。这在本节“四、软开关技术及常见拓补简介”中将予以介绍。
§2-3-4.软开关技术及常见软开关拓补简介
软开关技术实际上是利用电容与电感的谐振,使开关器件中的电流或电压按正弦或准正弦规律变化。当电流过零时,使器件关断,当电压过零时,使器件开通,实现开关的近似零损耗。同时,有助于提高频率,提高开关的容量,减小噪声。相对于软开关,普通开关电源的转换器也叫硬开关。
按控制方式,软开关可以分为:脉冲宽度调制式(PWM)、脉冲频率调制式(PFM)、脉冲移相式(PS)三种。
一、PWM变换器
PWM控制方式是指在开关管工作频率恒定的前期下,通过调节脉冲宽度的方法来实现稳定输出。这是应用最多的方式,适用于中小功率的开关电源。
1.零电流开关PWM变换器

上图是增加辅助开关控制的Buck型零电流开关变换器。其工作过程与前面过程略有差异:
1)线性阶段(S1、S2导通):开始时,在LR作用下,S1零电流导通。随后,因Uin作用,ILR线性上升,并到达ILR=Io。
2)正向谐振阶段(S1、S2导通-关断):当ILR=Io时,因CR开始产生电压,VD在零电流下自然关断。之后,LR与CR开始谐振,经过半个谐振周期,ILR再次谐振到Io,UCR上升到最大值,而ICR 为零,S2关断,UCR和ILR将被保持,无法继续谐振。
3)保持阶段(S1导通、S2关断):此状态保持时间由PWM电路要求而定,保持期间,Uin正常向负载以I0供电。
4)反向谐振阶段(S1导通-关断、S2导通):当需要关断S1时,可以控制重新打开S2,此时在LR作用下,S2电流为0。谐振再次开始,当ILR反向谐振到0时, S1可在零电流零电压下完成关断。
5)恢复阶段(S1关断、S2导通):此后,UCR 在Io作用下,衰减到0。
6)续流阶段(S1关断、S2导通-关断):UCR衰减到0后,VD自然导通开始续流。由于VD的短路作用,S2可在此后至下一周期到来前以零压零电流方式完成关断。
可见,S1在前四个阶段(线性、谐振、保持)均导通,恢复及续流时关断。S2的作用主要是隔断谐振产生保持阶段。S1、S2的有效控制产生了PWM的效果,并利用谐振实现了自身的软开关。
该电路的开关管及二极管均在零电压或零电流条件下通断,主开关电压应力低,但电流应力大(谐振作用)。续流二极管电压应力大,而且谐振电感在主通路上,因而负载、输入等将影响ZCS工作状态。
2.零电压开关PWM变换器

上面是Boost型零电压谐振变换器。在每次S1导通前,首先辅助开关管S2导通,使谐振电路起振。S1两端电压谐振为0后,开通S1。S1导通后,迅速关断S2,使谐振停止。此时,电路以常规PWM方式运行。同样,我们可以利用谐振再次关断S1,CR使得主开关管可以实现零关断。S1、S2的配合控制,实现软开关下的PWM调节。该电路实现了主开关管的零压导通,且保持恒频率运行。在较宽的输入电压和负载电流范围内,可以满足ZVS条件二极管零电流关断。缺点是辅助开关管不在软件开关条件下运行,但和主开关管相比,它只处理少量的谐振能量。
3.有源钳位的零电压开关PWM变换器
下图为有源钳位的ZVS开关PWM变换器,这是个隔离型降压变换器。其中,LR为变压器的漏电感,LM是变压器的激磁电感。CR为S1、S2的结电容。这个电路巧妙地利用电路的寄生LR、CR产生谐振而达到ZVS条件。同时,CR有电压钳位作用,防止S1在关断时过压。这里的辅助开关S2同样是通过控制谐振时刻,来配合S1进行软开关。该电路具体工作过程从略。

二、PFM变换器
PFM是指通过调节脉冲频率(开关管的工作频率)来实现稳压输出的。它控制电路相对简单,但由于它工作频率不稳定,因此一般用于负载及输入电压相对稳定的场合。
1.Buck零电流开关变换器

图2-22:Buck型ZCS准谐振变换器
该电路就是前面动态过程分析讲的典型ZCS降压型拓补结构。我们可利用谐振电流过零来实现S1通断,脉宽事实上受谐振电路参数控制,但我们可以控制S1开通时刻(即频率)来实现PFM。
2.Buck零电压开关变换器

图2-23:Buck型ZVS准谐振变换器
这个电路是一个Buck型电路结构它利用。它直接利用输出电感作为谐振电感,和CR产生谐振。过程是:
1)线性阶段(S导通):S导通时,输入电压Uin将对CR充电,并提供输出恒流I0。开始时,由于续流过程没有结束,VD将维持一段时间向LR提供电流。
2)谐振阶段1(S导通-关断):随着CR电压的上升,VD逐步承受反压关断。LR、CR开始谐振,输入电源既要提供负载恒定电流,又要提供谐振电流。由于电源钳位作用,VD无法恢复续流。谐振中,可以选择某一时刻关断S,关断时两端电压为0。
3)谐振阶段2(S关断):此后,LR、CR、CS共同谐振。当CR电压谐振到过零时,VD重新导通续流。
4)谐振阶段3(S关断-导通):续流期间,LR、CS继续谐振。当CS电压过零时,可以重新开通S。
这个电路是利用S的关断时刻来达到PFM调节的。
三、PS软开关变换器
脉冲移相软开关变换器用于桥式变换器。桥式变换器必须是在对角开关管同时导通时,才输出功率。我们可以通过调整对角开关管的重合角度,来达到调节电压的目的。在中、大功率电源中,经常使用这种变换器。
1.移相全桥零电压零电流变换器
下图是移相式PS-FB-ZVZCS-PWM(移相-全桥-零电压零电流-脉宽调制)变换器电路拓补结构图。
C1C、C2C是开关管结电容或并联电容,LR为变压器的漏电感,LS为串联的饱和电感,Cb为阻断电容。VD1-VD4用做续流二极管。
原理简述:这是一个全波桥软开关变换器,我们可以让S3、S4在移相时滞后,则我们把S1、S2称为超前桥臂,S3、S4称为滞后桥臂。S1、S2可以在LR、LS、C1C、C2C、副边耦合电感等的谐振作用下,实现零电压开关。在电流过零时,由于阻断电容、饱和电感作用,使得零电流有一定保持时间,在此期间,S3、S4实现零开关。如果把LS、Cb去掉,在S3、S4两端并联两个谐振电容,就构成了移相全桥零电压变换器。

图2-24:移相全桥零电压零电流变换器
2.不对称移相全桥零电压零电流变换器
下图中,超前臂外接了旁路电容和反并二极管,而滞后臂则没有。所以称为不对称移相全桥变换器。这个电路同样是通过谐振在零压时开关S1、S3,而在零电流开关S2、S4。这个电路和对称全桥的区别是,对称全桥由于滞后桥臂有续流二极管和电容,因此在电流过零后,将形成反向流通渠道,因此要有比较大的电感来维持电流过零的时间,以完成对滞后桥臂的开关。而不对称全桥则因为滞后桥臂没有了通路,因此过零后能保持在零电流,以便完成滞后臂的开关。同时,由于对称全桥电路原边串联了比较大的电感,因而电源效率会有一定损失。而不对称电路可以不串较大电感,所以损耗降低,电源效率得以提高。
下面是该电路的工作过程要点分析如下:

图2-25:不对称移相全桥零电压零电流变换器
1.先看对角导通,如S1、S4开通时,原边能量正常向副边传输,C2、Cc充电。
2.当S1关断时,C1充电,C2放电,原边电流方向不变。由于C1上升是渐进的,所以S1属于零压关断。
3.当C2放电过零,VD2开始反向导通时,可以控制S3导通,因此S3为零压导通。
4.S3导通上升沿触发一单稳态脉冲,控制辅管Sc导通。此时,Cc电压被瞬间接到变压器副边。从而在原边产生一瞬间高压,此较高电压将加快原边电流迅速复位归零。
5.当电流回零后,辅管关断。此时副边又被钳制在近似短路的低电压,原边电压也迅速降低。使得C3电压反向加到S4上,促使S4在零电流下关断。
6.此时,在Lk作用下,同时可以零电流开通S2。电流换向成功,进入下半个周期。
7.副边在原边换向的同时,也完成换向,且由于Cc的存在,抑制了整流管的反向尖峰电压。
第四节:其它软开关技术应用及发展概况
其实,为了提高对输入电压、负载变化的适应能力,降低开关管电压、电流应力,减少开关损耗等目的,其它改进型的软开关类型还有很多,也有许多问题需要讨论,远远不是这些篇幅所能探讨的。这里只简单浏览相关典型软开关电路,感兴趣者可查阅相关专业资料。
1.半桥不对称PWM变换器:与全桥变换器不同,在合适的控制方案下,半桥电路也可以组成不对称ZVS变换器,但无法构成ZVZCS电路。它可以实现开关管的零压切换,且在宽负载和输入电压范围实现恒频PWM调节。
2.有源与无源软开关,一般的软开关,分为有源和无源两种。传统的软开关要附加有源器件(如开关)及控制电路,近几年逐步开始开发无源软开关,从而促进了电路的简化和开关电源的成本降低。
这项技术的关键是用简单的电路结构来实现dv/dt、di/dt的降低,从而有效地完成ZVS、ZCS控制,以消除电路中的有源部分。
3.DC/DC变换器
DC/DC变换器:实际上就是前面讲到的各类变换器。只是去掉开关电源的输入电路及部分输出整流器件,形成简单的DC/DC转换模块。这类器件目前取得了较大范围的应用,使得用户可以简单地构件自己的电源系统。这种器件的研发,成为开关电源的一个重要分支。
4.软开关逆变器:借用软开关的概念,在全桥电路上适当改进,可以构成软开关全桥有源逆变器电路。所以,软开关技术的应用不仅仅限于开关电源本身,其它类似功率变换电路也可以借用这个技术,而实现功率器件的软开关,从而降低损耗,提高效率。典型的如变频器、电机保护器。
5.三电平电路:在大功率高电压变换电路中,管子的电压应力必须尽量降低。因此,研发了所谓三电平电路。通过增加“变换电感”和电容器件,达到降低电压应力的目的。这个方案可以使开关管电压应力降低到输入直流电压的一半。
6.其它电路及发展方向
变换器电路实际还有很多问题需要讨论,我们在有限的时间内不可能完全涉及。变换器目前的发展大体有如下两个主要趋势:朝高功率密度、大电流发展。以满足高功率电源需要。朝低压发展,以满足低损耗系统的需要。目前在1VDC电源方向展开了一系列研究。


R88 发表于 2013-4-27 20:41:40

第三部分:开关电源集成控制芯片
目前,集成开关电源控制芯片技术已经十分成熟,为开关电源的制造带来极大便利,并促进了成本的下降。这类芯片含有:MOS智能开关、电源管理电路、半桥或全桥逆变器、PWM专用SPIC、线性集成稳压器、开关集成稳压器等。下面我们介绍单片开关电源及其应用:
TOPSwitch单片电源电路是美国动力(PI)公司的产品,在仪器仪表、笔记本电脑、移动电话、音像设备等系统中获得广泛应用。这个器件集成了功率开关管(MOSFET)、控制电路、振荡器等于一体。它仅采用三端器件,以最简单的接线方式,构成电源系统。从而极大地简化了150W以下电源系统的设计。TOPSwitch-I、TOPSwitch-II系列单片电源器件:单片开关电源具有单片集成化、最简外围电路、最佳性能指标、能构成无工频变压器开关电源等显著优点。美国动力公司在世界上率先研制成功的三端隔离式脉宽调制单片开关电源集成电路,被誉为“顶级开关电源”。TOPSwitch-I系列是美国动力公司1994年推出的第一代产品。包括:TOP100-TOP104、TOP200-TOP204/TOP214、TOP209/TOP210。TOPSwitch-II则是在1997年推出的第二代产品。第二代产品在电路性能,特别是输出功率上获得大幅度的提高。这两个系列的封装是一致的,实际上它是一个三端器件。三个脚分别是D、S、C,即漏极、源极、控制极。封装形式有TO-220的三端器件式和DIP-8、SMD-8的八脚双列式两种基本形式。如左图。八脚封装的1-3、6-8通常并联后作为S,所以也相当于三端器件。这三个脚的含义是:(a)TO-220封装(b)DIP-8封装和SMD-8封装,图4-22:TOPSwitch的封装:

源极S:连接内部MOSFET的源极,同时也是TOP开关及开关电源初级电路的公共接地点及基准点。漏极D:是内部MOSFET的漏极,也是内部电流的检测点。该点内部有一电流源提供芯片偏置电流。控制极C:误差放大电路和反馈电流输入端。其作用是:1)提供自动重启电容连接点并决定重启频率。2)通过调节其输入电流,可以调整占空比。3)为芯片提供正常工作的偏置电流。4)提供旁路和补偿功能的电容连接点。下面的介绍中,我们以TOPSwitch-II为主。TOPSwitch-II产品的分类及特点:TOPSwitch-Ⅱ与第一代产品相比,它不仅在性能上进一步改进,而且输出功率得到显著提高,现已成为国际上开发中、小功率开关电源及电源模块的优选集成电路,其产品分类见表1。

表1:TOPSwitch-Ⅱ的产品分类及最大输出功率POM(单位:W)
性能特点:1.将脉宽调制(PWM)控制系统的全部功能集成到三端芯片中。内含脉宽调制器、功率开关场效应管(MOSFET)、自动偏置电路、保护电路、高压启动电路和环路补偿电路,通过高频变压器使输出端与电网完全隔离,真正实现了无工频变压器、隔离式开关电源的单片集成化,使用安全可靠。2.输入交流电压和频率的范围极宽。作固定电压输入时可选110V/115V/230V交流电,允许变化±15%;在宽电压范围输入时,适配85V~265V交流电,但POM值要比前者降低40%。3.典型频率100KHz,允许值90-110KHz,占空比调节范围:1.7-67%。4.TOPSwitch-Ⅱ只有3个引出端,可以同三端线性集成稳压器相媲美,能以最简方式构成无工频变压器的反激式普通型或精密型开关电源。开关频率的典型值为100kHz,允许范围是90kHz~110kHz,占空比调节范围是1.7%~67%。5.外围电路简单,成本低廉。芯片本身功耗很低,温度范围0-70摄氏度,最高结温135摄氏度。电源效率可达80%左右,比线性集成稳压电源提高了近一倍。
TOPSwitch-II的工作原理:TOPSwitch-Ⅱ的内部框图如图所示。主要包括10部分:

1.控制电压源:由控制电压UC向并联调整器和门驱动级提供偏压,而控制端电流IC则能调节占空比。
2.带隙基准电压源:给内部提供各种基准电压。
3.振荡器:产生锯齿波(SAW)、最大占空比信号(Dmax)和时钟信号(CLOCK))。
4.并联调整器/误差放大器
5.脉宽调制器:通过改变控制端电流IC的大小,连续调节脉冲占空比,实现脉宽调制并能滤掉开关噪声电压。
6.门驱动级和输出级:内含耐压为700V的功率开关管MOSFET。
7.过流保护电路:利用MOSFET的漏-源通态电阻RDS(ON)来检测过电流,当ID过大时令MOSFET关断,起到过流保护作用。
8.过热保护及上电复位电路:当芯片结温Tj>135℃,关断输出级。
9.关断/自动重启动电路:当调节失控时,立即使芯片在低占空比下工作。倘若故障已排除,就自动重新启动电源恢复正常工作。
10.高压电流源:提供偏流用。
事实上,TOPSwitch-I也包括这样的十个部分。TOPSwitch-Ⅱ的工作原理是利用反馈电流IC来调节占空比D,达到稳压目的。如:当输出电压UO↑时,经过光耦反馈电路使得IC↑→D↓→UO↓,最终使UO不变。
四.TOPSwitch-II单片电源的应用:下面这个图,显示了单片开关电源的典型应用方法:

该电路交流输入电压范围Ui=85V~265V,AC,输入电网频率f=47Hz~440Hz,电压调整率SV=±0.5%,负载调整率SI=±1%,电源效率达80%,输出纹波电压的最大值为±50mV。该电源采用带稳压管(VDZ2)的光耦反馈工作方式。电路中共使用两片集成电路,IC1为TOP202Y型单片开关电源,IC2是日本产NEC2501-H型线性光耦合器。C6与L2构成交流输入端的电磁干扰(EMI)滤波器。C6能滤除由初级脉动电流产生的串模干扰,L2可抑制初级绕组中产生的共模干扰。C7和C8为安全电容,能滤除由初、次级绕组之间耦合电容所产生的共模干扰。宽范围电压输入时,85V~265V交流电经过整流器BR、C1整流滤波后,获得直流输入电压Ui。由VDZ1和VD1构成的漏极钳位保护电路可将由高频变压器漏感产生的尖峰电压钳位到安全值以下,并能减小振铃电压。VDZ1选用P6KE150型瞬态电压抑制器(TVS),其钳位电压为150V,钳位时间仅1ns,峰值功率是5W。VD1需采用UF4005型1A/600V的超快恢复二极管(FRD),其反向恢复时间trr=30ns。次级电压经VD2,C2,L1,C3整流滤波后产生+7.5V的输出电压。R2和VDZ2与输出端并联,构成开关电源的假负载,可提高空载或轻载时的负载调整率。反馈绕组电压经过VD3整流、C4滤波后,得到反馈电压,再经过光敏三极管给TOP202Y提供一个偏置电压。VD2选择UGB8BT型超快恢复二极管,为降低功耗,还可选肖特基二极管。光耦合器IC2和稳压管VDZ2还构成了TOP202Y的外部误差放大器,能提高稳压性能。当输出电压UO发生变化时,由于VDZ2具有稳压作用,就使光耦中LED的工作电流IF发生变化,进而改变TOP202Y的控制端电流IC,再通过调节输出占空比,使UO保持稳定,这就是其稳压原理。R1为LED的限流电阻,并能决定控制环路的增益。C5是控制端旁路电容,除对环路进行补偿之外,还决定着自动重启动频率。高频变压器选用EE22型铁氧体磁芯,初级电感量LP=620μH±10%,漏感量LP0≤11μH。
TOPSwitch-FX系列单片电源:Power Integrations(PI)公司在2000年3月发布了新的TOPSwitch-FX开关电源IC系列,它为设计高度集成的电源提供了更大的灵活性,采用的EcoSmart节能技术可以帮助工程师生产出符合环保要求的更加“绿色”的电子产品。器件输出功率最高达75W,可广泛应用于手机充电器、PC待机电源、机顶盒、DVD和LCD显示器等不同领域。TOPSwitch-FX在TOPSwitch-II三个引脚的基础上增加了二个引脚,其中一个是多功能引脚(M),另一个是频率引脚(F)。多功能引脚(Multi-Function):TOPSwitch-FX使多功能可以通过单一的可编程引脚(Multi-Function)来实现。
1.这个引脚可以利用一个电阻同时设置欠压、过压以及前馈的保护功能。当整流后的DC电压值超过了设置的过压阈值时,将强迫TOPSwitch-FX的功率MOSFET关断,增加了对浪涌电压的防护能力。欠压检测可以防止关闭电源时出现瞬变的电压尖峰。执行电压前馈可以减少输出电压纹波。
2.这个引脚还可以允许用几种方式进行TOPSwitch-FX的远程ON/OFF控制。
3.此外,这个引脚还可以用来在外部编程设置精确的电流限值。
频率引脚(FREQUENCY):只在TO-220封装下提供,它与控制脚(CONTROL)短接时,可使正常的开关频率130kHz缩小到一半,即65kHz。这对于噪声敏感的视频应用或高效率待机工作模式都是有利的。
器件的新功能--TOPSwitch-FX还集成了一些新的功能,其中有:
1.新增多功能引脚,保护功能加强。
2.新增频率引脚,有利于控制噪声和提高待机效率。
3.软启动(Soft-Start),可以降低启动时元器件的峰值电流与电压负荷。
4.频率抖动(Frequency Jitter),可降低电磁干扰。
5.滞后过热保护。
6.采用多方面的EcoSmart节能技术,使能源得到更有效的利用,可实现环保设计。例如,遥控开/关、省略周期(Cycle Skipping)和频率减半等功能可以显著地降低能耗,特别是在待机和空载的条件下。这种特性使得很多电子产品可以达到甚至超过如Energy Star、Blue Angel、Energy 2000之类的通用节能标准。 这个芯片尽管增加了许多新的功能,但仅仅8个月,即被新版本的TOPSwitch-GX替代。因此,该芯片不做课程重点,我们这里重点介绍TOPSwitch-GX芯片。
TOPSwitch-GX系列单片开关电源:以往芯片存在一些不足:纹波电压较大、空载和轻载损耗大、高温工作时输出功率受限、启动时元件承受较大的尖峰电压和电流以及设计不够灵活等。针对这些不足之处,Power Integrations公司优化了芯片的内部布局,改进了电路功能,于2000年11月新推出了TOPSwitch家族的第四代芯片:TOPSwitch-GX系列。TOPSwitch-GX系列增加了许多新功能,从而有效地降低了电源系统成本,提高了电源性能,改善了设计灵活性并扩展了电源输出功率。如其中的TOP250型芯片,最大输出功率可达290W,该芯片极大地扩展了开关电源芯片在大功率领域内的应用范围。
TOPSwitch-GX系列的功能特点--TOPSwitch-GX系列新增的主要功能及其优点如下:
1.更宽的输出功率范围,最大可达290W。
2.可减少外围器件的损耗。
3.在极低压或过压时能实现完全软启动,进一步减小了器件在启动时的电压、电流应力。
4.外部可编程精确地设定限制电流,减小了变压器铁芯体积,提高了电源效率。
5.更大的占空比,能提供更大的输出功率并减小了输入电容。
6.在Y、R、F型式封装中将电压检测管脚与限流管脚分开封装,提高了设计的灵活性。
7.欠压保护,不会造成误关断。
8.有过压保护,可以限制浪涌电流。
9.采用线电压前馈,减小了低压时的输出电压纹波,限制了高压时的最大占空比(Dmax)。
10.有±3%的频率抖动,减小了电磁干扰(EMI),并降低了EMI滤波器的损耗。
11.空载、轻载时可降低工作频率,使输出电路无需加假负载,从而显著地减少了能量损耗。
12.高达132kHz的工作频率,减小了变压器和电源的体积。
13.在视频应用时可选择半频(66kHz)运行(只限于Y、R、F封装),有利于控制噪声。
14.温度范围更宽的滞后热关断,允许电源在高温下输出更大的功率,并有效地防止装置过热。
TOPSwitch-GX系列的这些优点使其可广泛地应用于手提电脑、PDA、集线器、交换器、路由器、台式电脑、小型服务器、机顶盒、数码电视、打印机、DVD、UPS、电视游戏机、音频放大器等装置中。
器件管脚功能描述:TOPSwitch-GX系列有TOP242—TOP250的9种不同容量型号,又分为Y、P、G、R、F等5种封装形式。根据封装形式不同,TOPSwitch-GX系列芯片新增的管脚数也不同。P、G型封装与第三代芯片TOPSwitch-FX系列一样只有D、S、C、M四个管脚,而Y、R、F型封装则有六个管脚:D、S、C、F、X、L。图4-25为Y/R/F型封装芯片引脚图,Y、R、F型封装的管脚功能如下。

图4-25:TOPSwitch-GX引脚图
管脚功能说明--器件的六个引脚说明如下:
1.漏极管脚(D):高压功率MOSFET漏极输出。通过此脚从高压开关电流源输入内部启动偏置电流。
2.控制管脚(C):用于调节占空比的误差放大器电流输入脚。在正常操作期间通过连接至内部分流调节器来提供内部偏置电流,也可以作为电源的旁路和自动重启/补偿电容的连接点。
3.源极管脚(S):内部MOSFET的源极。将其连接至输出MOSFET源极时可得到高压功率回馈。
4.电压检测管脚(L):作为欠压保护(UV)、过压保护(OV)、减少Dmax的线性前馈及远程开/关等4项功能的控制脚。
1)当脚L与脚S短接时,各项功能均不起作用;
2)当L脚串联电阻接至电源母线时,可实现UV、OV及随母线电压减少Dmax的3项功能;
3)当脚L通过电阻与脚C相连,并外接一级开关信号放大电路时可以实现远程控制开/关的作用。
5.外部限流管脚(X):用于外部电流限制值设置的输入脚。
1)当串联电阻接至地线时为外部可编程精确设定限流值;
2)当串电阻接至电源母线时可随母线电压调节限流值。
6.频率管脚(F):用于选择开关频率的输入脚。在多数应用场合下将脚F连接至源极管脚S,此时开关频率为132kHz。在一些特殊应用场合如对噪音敏感的音频设备中,将脚F连接至控制管脚C时开关频率降为66kHz以减小干扰。
器件类型及参数--下表是GX系列的器件类型及相关数据。

可以看出,GX系列从6.5W到290W,有比较宽的功率选择范围。总体分类:按输入:固定输入为110/115/230VAC,宽输入为:85-265VAC。按模块外形:密封式和敞开式,后者功率相对更高。按封装形式:有Y、P、G、R、F等5种封装形式。其它更具体的模块使用特性及应用要领,需要时我们可以查阅相关手册。由于许多新的特性和宽的选择范围,这个系列的器件目前是PI公司推广的主流开关电源器件。
内部功能原理:下图是器件的内部原理框图。

图4-26:TOPSwitch-GX的内部原理框图
电路主要包含18部分:1.控制电压源。2.带隙基准电压源。3.频率抖动振荡器。4.并联调整器/误差放大器。5.脉宽调制器,含PWM比较器和触发器。6.过流保护电路。7.门极驱动和输出极。8.具有滞后特性的过热保护电路。9.高压电流源。10.软启动电路。11.关断/自动重启电路。12.欠压比较器。13.电流极限比较器。14.线路比较器。15.线路检测端和极限电流设定端的内部电路。16.轻载时自动降低开关频率的电路。17.停止逻辑。18.开启电压为1V的电压比较器。
TOPSwitch-GX的典型应用:

所示电路为单端反激式开关电源,利用了TOPSwitch—GX的某些特性来降低系统成本,减小电源尺寸,提高效率。此电路采用通用的85~265V交流输入,输出12V直流电压,功率70W。考虑到密封适配器的工作环境,选用热损耗最小的TOP249Y。
电阻R9和R10从外部将限流值设定为仅略高于低电压工作时的满载峰值电流,从而允许使用更小的变压器磁芯,同时可以避免启动和输出负载瞬态的磁芯饱和。电阻R9和R10还能使限流值随电压升高而降低,从而限制高输入电压时的最大过载功率,并使次级无需任何保护电路。电阻R11实现欠压和过压检测。当R11=2MΩ时,电源在直流电压达到100V之后才开始工作。在关断交流输入时,欠压检测防止C1放电时的输出干扰,并在输入直流电压降到40V以下时关断TOPSwitch—GX。过压门限值被设定为DC450V,当超过此值时,例如发生电涌时,器件在电涌期间停止工作,从而使器件可以经受700V高压的冲击。电容C11与VR1并联以降低齐纳箝位损耗,VR1、D1组成缓冲吸收电路,吸收功率器件在关断过程中由于变压器漏感产生的电压尖峰过冲。电路的工作频率为132kHz,可用PQ26/20磁芯提供70W功率。为了调节输出,用光耦(U2)和次级基准一起,通过电阻分压网络(U3,R4,R5,R6)检测输出电压。D3和C12对偏置绕组的输出进行整流和滤波,R8实现漏感尖峰滤波,使偏置电压在输出负载变化很大时仍能保持恒定,为了改善抵抗共摸电涌的能力,偏置绕组的共摸电路直接与直流大电容(C1)相连。输入电容能提供TOPSwitch-GX所需的最小直流电压,以保证最低额定输入电压和最大输出功率条件下电压受控。由于GX的DCmax比TOPSwitch-Ⅱ的高,它可以使用更小的输入电容。对TOPSwitch-GX而言,通常输入电容可按2μF/W来选取。

光耦:通常的光电耦合器由于它的非线性,因此在模拟电路中的应用只限于对较高频率的小信号的隔离传送。普通光耦合器只能传输数字(开关)信号,不适合传输模拟信号。近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。
光耦合器的性能特点及其抗干扰作用:光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。由于光电耦合器的输入阻抗与一般干扰源的阻抗相比较小,因此分压在光电耦合器的输入端的干扰电压较小,它所能提供的电流并不大,不易使半导体二极管发光。光电耦合器的外壳是密封的,它不受外部光的影响。光电耦合器的隔离电阻很大、隔离电容很小(约几个pF),所以能阻止电路性耦合产生的电磁干扰。线性方式工作的光电耦合器是在光电耦合器的输入端加控制电压,在输出端会成比例地产生一个用于进一步控制下一级的电路的电压。它由发光二极管和光敏三极管组成,当发光二极管接通而发光,光敏三级管导通。光电耦合器是电流驱动型,需要一定的电流才能使发光二极管导通,如果输入信号太小,发光二极管不会导通,其输出信号将失真。在开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。在开关电源中我们是采用电压环进行闭环调节实现输出电压的稳定输出的,光电耦合器作为输入采样、反馈信号、输出驱动的隔离器件。一方面光电耦合器可以起到隔离两个系统地线的作用,使两个系统的电源相互独立,消除地电位不同所产生的影响。另一方面,光电耦合器的发光二极管是电流驱动器件,可以形成电流环路的传送形式,电流环路是低阻抗电路,对噪音的敏感度低,提高了系统的抗干扰能力,起到了电磁兼容和隔离抗干扰的作用,不会因为电路中的高频电流的电磁干扰对控制电路产生干扰。
光耦合器的技术参数:主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间等参数。电流传输比CTR是光耦合器的重要参数,通常用直流电流传输比来表示。当输出电压保持恒定时,它等于直流输出电流IC与直流输入电流IF的百分比。其公式为:CTR=(IO/IF)X100%,采用一只光敏三极管的光耦合器,CTR的范围大多为20%~300%(如4N35),而PC817则为80%~160%,达林顿型光耦合器(如4N30)可达100%~5000%。这表明欲获得同样的输出电流,后者只需较小的输入电流。因此,CTR参数与晶体管的hFE有某种相似之处。普通光耦合器的CTR-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。线性光耦合器的CTR-IF特性曲线具有良好的线性度,特别是在传输小信号时,其交流电流传输比(ΔCTR=ΔIC/ΔIF)很接近于直流电流传输比CTR值。因此,它适合传输模拟电压或电流信号,能使输出与输入之间呈线性关系。这是其重要特性。
线性光耦合器的产品及选取原则:使用光电耦合器主要是为了提供输入电路和输出电路间的隔离,在设计电路时,必须遵循下列原则:所选用的光电耦合器件必须符合国内和国际的有关隔离击穿电压的标准;由英国埃索柯姆(Isocom)公司、美国摩托罗拉公司生产的4N××系列(如4N25、4N26、4N35)光耦合器,目前在国内应用地十分普遍。鉴于此类光耦合器呈现开关特性,其线性度差,适宜传输数字信号(高、低电平),可以用于单片机的输出隔离;所选用的光耦器件必须具有较高的耦合系数。

开关电源则应该选择线性光电耦合器,上表给出了常见的线性光电耦合器及主要数据。其次,必须正确选择线性光耦合器的型号及参数。除了必须遵循普通光耦的选取原则外,还必须考虑合理选择CTR值。光耦合器的电流传输比(CTR)的允许范围是50%~200%。这是因为当CTR<50%时,光耦中的LED就需要较大的工作电流(IF>5.0mA),才能正常控制单片开关电源IC的占空比,这会增大光耦的功耗。若CTR>200%,在启动电路或者当负载发生突变时,有可能将单片开关电源误触发,影响正常输出。

功率因素校正技术简述:对开关电源来讲,功率因素校正技术是一门新兴的技术,它对提高开关电源效率发挥了重要的作用。这里我们只简单介绍其概念和基本原理,不对实际电路进行介绍。感兴趣的读者可以自行查阅相关资料。
一.校正技术的提出和标准
传统的开关电源,功率因素为0.45-0.75,效率极低,而且高次谐波含量高。采用了功率因素校正技术的电源,功率因素可以提高到0.95-0.99。开关电源校正的概念起源于1980年,在80年代末和90年代获得重视和推广。欧洲和日本相继对开关电源的谐波提出了控制标准,目前有两个沿用的标准:IEC555-2和IEC1000-3-2。由于对电源效率品质和电磁兼容性要求的日益提高,开关电源功率因素校正技术成为开关电源的研究热点之一。
二.功率因素校正的基本原理
如果输入整流电路之后直接接电阻性负载,则整流后的波形为正弦波,功率因素基本为1,高次谐波成分很低。但由于实际电路中L、C滤波等的作用,电流、电压造成相差,而且电容的充放电电流、电感的电压等都会造成尖脉冲,从而造成高次谐波的产生和功率因素的明显下降。我们假想——如果在整流电路和变换器之间插入一级隔离电路,使得输入电路的综合负载接近于电阻性,则功率因素可望得到提高。
三.功率因素校正电路(PFC)
实际的功率因素校正电路有两类:无源校正电路——依靠无源元件电路改善功率因素,减小电流谐波,其电路简单,但体积庞大,现在很少采用。有源校正电路——在输入电路和DC/DC变换器之间插入一个变换器,通过特定控制电路使得电流跟随电压,并反馈输出电压使之稳定,从而使DC/DC变换器实现预稳。这个方案电路复杂,但体积明显减小,因而成为PFC技术的主要研究方向。对有源PFC技术,原来采用两级变换器,第一级专门作为PFC前置级,第二级用于DC/DC变换。现在开始研究单级变换器,即把相关可以合并的部分做到同一级中,形式上雷同于一级变换器电路。
四.集成PFC控制器
针对PFC技术的研究日益成熟后,陆续又开发了一系列PFC集成控制电路。UC3854、UC3858、TDA16888、FA5331P、FA5332P等,都是这类控制芯片。可以说,从控制技术上来将,软开关技术、PFC技术是提高电源品质的双刃剑,有关研究方兴未艾。

电磁兼容技术与噪声
一.开关电源的电磁干扰
开关电源因具有体积小、重量轻、效率高、工作可靠、可远程监控等优点,而广泛应用于工业、通讯、军事、民用、航空等各个领域。在很多场合,开关电源,特别是通信开关电源要有很强的抗电磁干扰能力,如对浪涌、电网电压波动的适应能力,对静电干扰、电场、磁场及电磁波等的抗干扰能力,保证自身能够正常工作以及对设备供电的稳定性。一方面,因开关电源内部的功率开关管、整流或续流二极管及主功率变压器,是在高频开关的方式下工作,其电压电流波形多为方波。在高压大电流的方波切换过程中,将产生严重的谐波电压及电流。这些谐波电压及电流一方面通过电源输入线或开关电源的输出线传出,对与电源在同一电网上供电的其它设备及电网产生干扰,使设备不能正常工作;另一方面严重的谐波电压电流在开关电源内部产生电磁干扰,从而造成开关电源内部工作的不稳定,使电源的性能降低。还有部分电磁场通过开关电源机壳的缝隙,向周围空间辐射,与通过电源线、直流输出线产生的辐射电磁场,一起通过空间传播的方式,对其它高频设备及对电磁场比较敏感的设备造成干扰,引起其它设备工作异常。 因此,对开关电源,要限制由负载线、电源线产生的传导干扰及有辐射传播的电磁场干扰,使处于同一电磁环境中的设备均能够正常工作,互不干扰。
二.国内外电磁兼容性标准
电磁兼容性是指设备或系统在其电磁环境中能正常工作且不对该环境中的任何设备构成不能承受的电磁干扰的能力。要彻底消除设备的电磁干扰及对外部一切电磁干扰信号是不可能的。只能通过系统地制定设备与设备之间的相互允许产生的电磁干扰大小及抵抗电磁干扰的能力的标准,才能使电气设备及系统间达到电磁兼容的要求。国内外大量的电磁兼容性标准,为系统内的设备相互达到电磁兼容性制订了约束条件。国际无线电干扰特别委员会(CISPR)是国际电工委员会(IEC)下属的一个电磁兼容标准化组织,设六个分会。早在1934年就开展EMC标准的研究。其中第六分会(SCC)主要负责制定关于干扰测量接收机及测量方法的标准。CISPR16《无线电干扰和抗干扰度测量设备规范》对电磁兼容性测量接收机、辅助设备的性能以及校准方法给出了详细的要求。CISPR17《无线电干扰滤波器及抑制元件的抑制特性测量》制订了滤波器的测量方法。CISPR22《信息技术设备无线电干扰限值和测量方法》规定了信息技术设备在0.15~1000MHz频率范围内产生的电磁干扰限值。CISPR24《信息技术设备抗扰度限值和测量方法》规定了信息技术设备对外部干扰信号的时域及频域的抗干扰性能要求。其中CISPR16、CISPR22及CISPR24构成了信息技术设备包括通信开关电源设备的电磁兼容性测试内容及测试方法要求,是目前通信开关电源电磁兼容性设计的最基本要求。IEC最近也出版了大量的基础性电磁兼容性标准,其中最有代表性的是IEC61000系列标准。它规定电子电气设备的雷击、浪涌(SURGE)、静电放电(ESD)、电快速瞬变脉冲群(EFT)、电流谐波、电压跌落、电压瞬变及短时中断、电压起伏和闪烁、辐射电磁场、由射频电磁场引起的传导干扰抗扰度、传导干扰及辐射干扰等的电磁兼容性要求。另外,美国联邦委员会制定的FCC15、德国电气工程师协会制订的VDE0871、2A1、VDE0871、2A2、VDE0878,都对通信设备的电磁兼容性提出了要求。我国对电磁兼容性标准的研究比较晚,采取的最主要的办法是引进、消化、吸收,洋为中用是国内电磁兼容性标准制订的最主要方法。1998年,信息产业部根据CISPR22、IEC61000系列标准及ITU-T0.41标准,制定了YD/T983-1998《通信电源设备电磁兼容性限值及测量方法》,详尽规定了通信电源设备包括通信开关电源的电磁兼容性的具体测试项目、要求及测试方法,为通信电源电磁兼容性的检验、达标并通过入网检测明确了设计目标。国标也等同采用了相应的国际标准。如GB/T17626.1~12系列标准等同采用了IEC61000系列标准;GB9254-1998《信息技术设备的无线电干扰限值及测量方法》等同采用CISPR22;GB/T17618-1998《信息技术设备抗扰度限值和测量方法》等同采用CISPR24。
三.开关电源的电磁兼容性问题
电磁兼容产生的三个要素为:干扰源、传播途径及受干扰体。开关电源因工作在开关状态下,其引起的电磁兼容性问题是相当复杂的。从整机的电磁兼容性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合和电磁波耦合几种。1.共阻抗耦合主要是干扰源与受干扰体在电气上存在共同阻抗,通过该阻抗使干扰信号进入受干扰对象。2.线间耦合主要是产生干扰电压及干扰电流的导线或PCB线,因并行布线而产生的相互耦合。3.电场耦合主要是由于电位差的存在,产生的感应电场对受干扰体产生的耦合。4.磁场耦合主要是大电流的脉冲电源线附近产生的低频磁场对干扰对象产生的耦合。5.而电磁波耦合,主要是由于脉动的电压或电流产生的高频电磁波,通过空间向外辐射,对相应的受干扰体产生的耦合。实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。在开关电源中,主功率开关管在很高的电压下,以高频开关方式工作,开关电压及开关电流均为方波,该方波所含的高次谐波的频谱可达方波频率的1000次以上。同时,由于电源变压器的漏电感及分布电容,以及主功率开关器件的工作状态并非理想,在高频开或关时,常常产生高频高压的尖峰谐波振荡。该谐波振荡产生的高次谐波,通过开关管与散热器间的分布电容传入内部电路或通过散热器及变压器向空间辐射。用于整流及续流的开关二极管,也是产生高频干扰的一个重要原因。因整流及续流二极管工作在高频开关状态,由于二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,而产生高频振荡。因整流及续流二极管一般离电源输出线较近,其产生的高频干扰最容易通过直流输出线传出。开关电源为了提高功率因数,均采用了有源功率因数校正电路。同时,为了提高电路的效率及可靠性,减小功率器件的电应力,大量采用了软开关技术。其中零电压、零电流或零电压零电流开关技术应用最为广泛。该技术极大地降低了开关器件所产生的电磁干扰。但是,软开关无损吸收电路多利用L、C进行能量转移,利用二极管的单向导电性能实现能量的单向转换,因而,该谐振电路中的二极管成为电磁干扰的一大干扰源。开关电源中,一般利用储能电感及电容器组成L、C滤波电路,实现对差模及共模干扰信号的滤波,以及交流方波信号转换为平滑的直流信号。由于电感线圈分布电容,导致了电感线圈的自谐振频率降低,从而使大量的高频干扰信号穿过电感线圈,沿交流电源线或直流输出线向外传播。滤波电容器,随着干扰信号频率的上升,由于引线电感的作用,导致电容量及滤波效果不断下降,直至达到谐振频率以上时,完全失去电容器的作用而变为感性。不正确地使用滤波电容及引线过长,也是产生电磁干扰的一个原因。开关电源PCB布线不合理、结构设计不合理、电源线输入滤波不合理、输入输出电源线布线不合理、检测电路的设计不合理,均会导致系统工作的不稳定或降低对静电放电、电快速瞬变脉冲群、雷击、浪涌及传导干扰、辐射干扰及辐射电磁场等的抗扰性能力。
四.电磁兼容性研究及解决方法
从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从三个方面入手。减小干扰源产生的干扰信号;切断干扰信号的传播途径;增强受干扰体的抗干扰能力。
在解决开关电源内部的电磁兼容性时,可以综合运用上述三个方法,以成本效益比及实施的难易性为前提。对开关电源产生的对外干扰,如电源线谐波电流、电源线传导干扰、电磁场辐射干扰等,只能用减小干扰源的方法来解决。一方面,可以增强输入输出滤波电路的设计,改善有源功率因数校正(APFC)电路的性能,减少开关管及整流续流二极管的电压电流变化率,采用各种软开关电路拓扑及控制方式等。另一方面,加强机壳的屏蔽效果,改善机壳的缝隙泄漏,并进行良好的接地处理。而对外部的抗干扰能力,如浪涌、雷击应优化交流输入及直流输出端口的防雷能力。通常,对1.2/50µs开路电压及8/20µs短路电流的组合雷击波形,因能量较小,可采用氧化锌压敏电阻与气体放电管等的组合方法来解决。对于静电放电,通常在通信端口及控制端口的小信号电路中,采用TVS管及相应的接地保护、加大小信号电路与机壳等的电距离,或选用具有抗静电干扰的器件来解决。快速瞬变信号含有很宽的频谱,很容易以共模的方式传入控制电路内,采用防静电相同的方法并减小共模电感的分布电容、加强输入电路的共模信号滤波(如加共模电容或插入损耗型的铁氧体磁环等)来提高系统的抗扰性能。减小开关电源的内部干扰,实现其自身的电磁兼容性,提高开关电源的稳定性及可靠性,应从以下几个方面入手:注意数字电路与模拟电路PCB布线的正确区分、数字电路与模拟电路电源的正确去耦;注意数字电路与模拟电路单点接地、大电流电路与小电流特别是电流电压取样电路的单点接地以减小共阻干扰、减小地环的影响;布线时注意相邻线间的间距及信号性质,避免产生串扰;减小地线阻抗;减小高压大电流线路特别是变压器原边与开关管、电源滤波电容电路所包围的面积;减小输出整流电路及续流二极管电路与直流滤波电路所包围的面积;减小变压器的漏电感、滤波电感的分布电容;采用谐振频率高的滤波电容器等。关于传播途径,有如下问题值得注意。MCU与液晶显示器的数据线、地址线工作频率较高,是产生辐射的主要干扰源;小信号电路是抗外界干扰的最薄弱环节,适当地增加高抗干扰能力的TVS及高频电容、铁氧体磁珠等元器件,以提高小信号电路的抗干扰能力;与机壳距离较近的小信号电路,应加适当的绝缘耐压处理等。功率器件的散热器、主变压器的电磁屏蔽层要适当接地,综合考虑各种接地措施,有助于提高整机的电磁兼容性。各控制单元间的大面积接地用接地板屏蔽,可以改善开关电源内部工作的稳定性。在整流器的机架上,要考虑各整流器间电磁耦合、整机地线布置、交流输入中线、地线及直流地线、防雷地线间的正确关系、电磁兼容量级的正确分配等。

micheal147 发表于 2013-4-27 23:01:24

mark{:victory:}

liangemb 发表于 2013-4-28 08:35:10

不错,很长知识!{:lol:}

donglaile 发表于 2013-10-18 00:42:51

不错哦,有时间好好看看,先收藏

梁国俭 发表于 2013-10-21 13:18:24


学习一下,非常好的资料。

coslight_dt 发表于 2013-10-21 13:57:47

讲的挺好~~

1109 发表于 2014-12-2 01:39:28

本帖最后由 1109 于 2014-12-2 01:41 编辑

http://cache.amobbs.com/new2012/forum/201304/18/124428e8xe0mq8srs0msij.jpg
一直都不明白:电流有效值=电流峰值*根号下的D*((KRP的平方/3)-KRP+1),想必很多人都和我一样{:lol:}。
关于这个公式的由来,今天幸运的在百度文库中找到了一份不错的资料,在此分享给大家。
这份文档把积分部分给省掉了,如果有人还看不懂我就把积分部分的推导给补充上来。


xinxinyu2013 发表于 2014-12-2 08:17:31

页: [1]
查看完整版本: 【转】发几篇电源的文章