marshallemon 发表于 2013-1-14 11:51:05

AVR E2PROM可靠性测试

准备系统的测试下AVR的E2PROM的可靠性,现采用M16最小系统+串口,先测试上电后只读不写的情况,在读的过程中人工不断的开关电源N次,n次后由串口观察之前的初始化数据是否改变,测试代码如下:

#include <mega16.h>

unsigned char eeprom Tab[]=
{
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1,2,3,4,5,6,7,8,9,
    0,1
};

#define RXB8 1
#define TXB8 0
#define UPE 2
#define OVR 3
#define FE 4
#define UDRE 5
#define RXC 7

#define FRAMING_ERROR (1<<FE)
#define PARITY_ERROR (1<<UPE)
#define DATA_OVERRUN (1<<OVR)
#define DATA_REGISTER_EMPTY (1<<UDRE)
#define RX_COMPLETE (1<<RXC)

// USART Receiver buffer
#define RX_BUFFER_SIZE 32
char rx_buffer;

#if RX_BUFFER_SIZE<256
unsigned char rx_wr_index,rx_rd_index,rx_counter;
#else
unsigned int rx_wr_index,rx_rd_index,rx_counter;
#endif

// This flag is set on USART Receiver buffer overflow
bit rx_buffer_overflow;

// USART Receiver interrupt service routine
interrupt void usart_rx_isr(void)
{
    char status,data;
    status=UCSRA;
    data=UDR;
    if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0)
    {
      rx_buffer=data;
      if (++rx_wr_index == RX_BUFFER_SIZE) rx_wr_index=0;
      if (++rx_counter == RX_BUFFER_SIZE)
      {
            rx_counter=0;
            rx_buffer_overflow=1;
      };
    };
}

#ifndef _DEBUG_TERMINAL_IO_
// Get a character from the USART Receiver buffer
#define _ALTERNATE_GETCHAR_
#pragma used+
char getchar(void)
{
    char data;
    while (rx_counter==0);
    data=rx_buffer;
    if (++rx_rd_index == RX_BUFFER_SIZE) rx_rd_index=0;
#asm("cli")
    --rx_counter;
#asm("sei")
    return data;
}
#pragma used-
#endif

// USART Transmitter buffer
#define TX_BUFFER_SIZE 32
char tx_buffer;

#if TX_BUFFER_SIZE<256
unsigned char tx_wr_index,tx_rd_index,tx_counter;
#else
unsigned int tx_wr_index,tx_rd_index,tx_counter;
#endif

// USART Transmitter interrupt service routine
interrupt void usart_tx_isr(void)
{
    if (tx_counter)
    {
      --tx_counter;
      UDR=tx_buffer;
      if (++tx_rd_index == TX_BUFFER_SIZE) tx_rd_index=0;
    };
}

#ifndef _DEBUG_TERMINAL_IO_
// Write a character to the USART Transmitter buffer
#define _ALTERNATE_PUTCHAR_
#pragma used+
void putchar(char c)
{
    while (tx_counter == TX_BUFFER_SIZE);
#asm("cli")
    if (tx_counter || ((UCSRA & DATA_REGISTER_EMPTY)==0))
    {
      tx_buffer=c;
      if (++tx_wr_index == TX_BUFFER_SIZE) tx_wr_index=0;
      ++tx_counter;
    }
    else
      UDR=c;
#asm("sei")
}
#pragma used-
#endif

// Standard Input/Output functions
#include <stdio.h>

// Declare your global variables here

void main(void)
{
// Declare your local variables here
    unsigned char ls=0;
    unsigned int i;

// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTA=0x00;
DDRA=0x00;

// Port B initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTB=0x00;
DDRB=0x00;

// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTC=0x00;
DDRC=0x00;

// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTD=0x00;
DDRD=0x00;

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer 1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer 1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer 2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;

// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: On
// USART Transmitter: On
// USART Mode: Asynchronous
// USART Baud Rate: 9600
UCSRA=0x00;
UCSRB=0xD8;
UCSRC=0x86;
UBRRH=0x00;
UBRRL=0x33;

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;

// Global enable interrupts
#asm("sei")

while (1)
      {
         for(i=0;i<512;i++)
         {
            ls=Tab;
            putchar(ls);   
         }
         while(1);
      };
}
经过多次的测试,不论是BOD开启与否,发现数据无一改变,但我之前设备上的应用发现即便是只读不写数据都是会改变的,哪位能提出篡改E2PROM概率比较大的方法以便我测试?我会陆续的把测试结论更新

cash95 发表于 2013-1-14 12:17:43

找个电子打火机点火的那个东西,向着供电正、负极多打几次就能看出来。CPU不会坏,如果有数据丢失,提高电源保护等级。如果没什么太贵的芯片,给接口部分也来几次。

注意,AVR一般不会损坏,但是其他芯片不好说。进行这种极端测试,后果自负。
页: [1]
查看完整版本: AVR E2PROM可靠性测试